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Abstract

This thesis describes the design and construction of an apparatus meant to achieve

degenerate quantum gases of erbium atoms. Erbium possesses a large magnetic

dipole moment of 7µB, making it an ideal candidate for the study of long-range

interactions in many-body quantum systems, and the present experiment aims to

combine the study of long-range dipole-dipole interactions with quasi-uniform trap-

ping geometries to study, e.g., roton physics and supersolidity. The starting point

is an atomic beam of Er atoms heated to 1200◦C, which we will collimate via trans-

verse laser cooling and decelerate with a Zeeman slower, home-built over the course

of this work. Both processes take place on a broad, 30 MHz transition at 401 nm,

allowing for efficient cooling and a compact Zeeman slower only 40 cm long. They

are designed with several tunable degrees of freedom, which we can systematically

optimize for maximum slow-atom flux at the experiment chamber. The next step is

to load a magneto-optical trap (MOT) operating on a narrow, 200 kHz transition at

583 nm, which will enable the production of fully spin-polarized atom clouds at tem-

peratures as low as 5 µK. Throughout this work we have paid particular attention

to the control and compensation of magnetic fields around the experiment cham-

ber, leaving the door open to future experiments requiring magnetic field tuning

at near-milliGauss level. This level of control is particularly important for erbium,

which along with its large magnetic moment also possesses many narrow, closely-

spaced Feshbach resonances. The results presented here represent a good starting

point from which to work towards MOT and optical trap loading, followed by forced

evaporation down to quantum degeneracy.



iii

Acknowledgements

Ultracold atom experiments, as it turns out, require an enormous investment of

time and resources, and without others around me on the erbium experiment, in the

Hadzibabic-Smith group, and in AMOP more broadly, we wouldn’t have made half

as much progress in the past year, nor would I be half as sane. I unquestionably

have to start at the top, with Zoran and Rob. Eighteen months ago, Zoran took on

the role of being my supervisor only later to find out that erbium would be fleeing

Cambridge after only a year; despite the hard deadline on the machine officially being

‘his,’ he has consistently offered insightful advice and asked the right questions to

help push the experiment forward. Rob, meanwhile, has been a daily presence who

almost inevitably offers clarity on even the most confounding problems, typically

with a few moments of humor thrown in for good measure. I owe them both a great

deal of gratitude for trusting that I knew what I was doing when they offered me a

place in the group.

I next have to thank my ‘other half’ on the erbium experiment, Milan Krstajic,

who not only single-handedly designed and built the vacuum system but also con-

sistently took on the most laborious tasks in the lab1 and tolerated my (often rather

unenlightened) questions all year. Also working on erbium for several months this

past year, Tobias Schaich and Tanish Satoor made valuable contributions to the

experiment during their Part III projects, as has Sean Seet over the last month.

Furthermore, I thank Kevin Mott and Gavin Ross, respectively, for assistance in the

workshop and with 3D printing.

Finally, I thank the other students and postdocs in the group, too numerous

to list here, for many enlightening conversations, for equipment sharing,2 and for a

friendly atmosphere that makes the group buzz. Along with the physics, I expect

recollections of ‘burger day’, the Cavendish custard, and football to remain with me

well after leaving Cambridge, and that is a testament to the exceptional collection

of people assembled here.

1Hours spent aligning and realigning (...and realigning yet again) a wayward frequency doubling
cavity from scratch come to mind.

2One and a half power meters are apparently not enough for four experiments.



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction and Background 1

1.1 Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 BEC in a Uniform Potential . . . . . . . . . . . . . . . . . . . 3

1.1.2 Atomic Interactions and Dipolar BEC . . . . . . . . . . . . . 4

1.2 Erbium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theory of Laser Cooling and Trapping 11

2.1 Laser Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Zeeman Slowing . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Optical Molasses . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The Magneto-Optical Trap (MOT) . . . . . . . . . . . . . . . . . . . 17

2.2.1 Narrow-Line Trapping . . . . . . . . . . . . . . . . . . . . . . 18

3 Experimental Design and Implementation 25

3.1 Experimental Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Optical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 401 nm Optical Setup . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 583 nm Optical Setup . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Spectroscopy and Frequency Stabilization . . . . . . . . . . . 31

3.4 Zeeman Slower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Design of the Slower . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Physical Implementation . . . . . . . . . . . . . . . . . . . . . 35

3.4.3 Characterization of the Slower . . . . . . . . . . . . . . . . . . 38

iv



CONTENTS v

3.5 Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 MOT Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Compensation Cage . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Ongoing and Future Work 50

4.1 Initial Observation of the Erbium Beam . . . . . . . . . . . . . . . . 50

4.2 Future Scientific Projects . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Extended Laser Cooling Theory 58

A.1 Zeeman Slowing Out of Equilibrium . . . . . . . . . . . . . . . . . . . 58

A.2 Zeeman Slowing to Nonzero Final Velocity . . . . . . . . . . . . . . . 62

A.2.1 Altered Magnetic Field Profile . . . . . . . . . . . . . . . . . . 63

A.2.2 Bias Field and Laser Frequency Tuning . . . . . . . . . . . . . 64

A.3 Narrow-Line MOT Behavior . . . . . . . . . . . . . . . . . . . . . . . 65

B Atomic Beam Flux and Spatial Profile 68

B.1 Spatial Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.2 Atomic Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Chapter 1

Introduction and Background

Over the past 25 years, ultracold atoms have emerged as an exciting platform with

which to study many-body quantum physics [1]. Experimental advances have made

it possible to implement precise Hamiltonians with dynamical control of both inter-

particle interactions and confining potentials in such systems, and techniques for

time-resolved extraction of thermodynamic quantities and other properties have

enabled breakthrough studies of, for instance, the superfluid to Mott insulator tran-

sition in Bose-Hubbard models [2] and the BEC-BCS crossover in fermionic gases

[3–5]. The ability of these systems to realize and study a range of Hamiltonians

recalls Feynman’s idea of an analog quantum simulator [6].

Until recently, interactions in ultracold atom systems were exclusively of a short-

range, van der Waals character. In recent years, however, the introduction of long

range, anisotropic dipole-dipole interactions (DDI) has led to the observation of

qualitatively new phenomena. This thesis describes the first year of construction of

a new such ultracold atom experiment, with highly magnetic erbium atoms, which

will ultimately allow for the study of homogeneous many-body physics with dipolar

interactions.

1.1 Bose-Einstein Condensation

A necessary starting point to establish the “quantumness” of a many-body system,

the phenomenon of Bose-Einstein condensation (BEC) was first proposed theoreti-

cally by Einstein [7] and Bose [8] in the 1920s and occurs when a nontrivial fraction

of bosons in an ensemble “condense” into their quantum-mechanical ground state.

The transition from a classical, thermal ensemble to such a macroscopically “quan-

tum” system occurs when the average inter-particle spacing becomes comparable to

1
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the quantum length scale associated with each particle – namely, the thermal de

Broglie wavelength,

λT =
h√

2πmkBT
, (1.1)

where h = 2π~ is the Planck constant, m is the particle mass, kB is the Boltzmann

constant, and T is the temperature of the system.

Such a condensate can be formed out of a classically thermal system by increasing

the particle number density, n = N/V (where N is the total particle number and V

is the system volume), decreasing the temperature so as to increase λT , or by some

combination of the two. A convenient parameter used to quantify the relationship

of these competing values is the so-called phase-space density,

ρ = nλ3
T , (1.2)

which denotes the average number of particles per “quantum volume” given by the

cube of the de Broglie wavelength. The BEC phase begins to emerge when ρ is

of order unity. For a non-interacting gas in a uniform potential (i.e. a box), the

phase-space density at condensation is ρ ≈ 2.612.1

BEC manifests itself in a variety of systems, including superfluid 4He [10] and

superconducting metals (in which bosonic pairs of fermionic electrons form the con-

densate) [11]. Due to their ready manipulability by electromagnetic fields (specifi-

cally laser radiation and magnetic coils), BECs of dilute atomic vapor have further

established themselves as fertile grounds for research over the past 20 years. To

achieve these gaseous condensates requires low particle densities between 1012 and

1015 cm−3; at higher densities a cold gas will attempt to return to its global ground

state – a solid – through rapid three-body recombination.2 Low temperatures on

the order of 10−7 K are necessary to ‘balance’ this low spatial density and achieve

high-enough ρ for condensation.

BEC in cold atoms was first realized in 1995 with 87Rb [13], 23Na [14], and 7Li [15,

16] through the use of a variety of laser cooling and trapping techniques developed

over the preceding two decades (see chapter 2) [17–23]. To date, approximately

twenty distinct bosonic species have been cooled to quantum degeneracy (see table

1.1).

1See, for instance, [9] for a more complete treatment of this case, as well as that of the harmonic
oscillator potential used so frequently in experiments.

2For comparison, room temperature air has a density of ∼ 1019 cm−3, and typical solids have
densities near 1023 cm−3 [12].

3The Innsbruck group later condensed both 166Er and 170Er [41], though the accomplishment
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87Rb [13] 23Na [14] 7Li [15, 16] 1H [24] 85Rb [25] 4He [26, 27]
1995 1995 1995 1998 2000 2001

41K [28] 133Cs [29] 174Yb [30] 52Cr [31] 39K [32] 40Ca [33]
2001 2003 2003 2005 2007 2009

84Sr [34, 35] 86Sr [36] 164Dy [37] 168Er [38]3 160Dy [39] 162Dy [39]
2009 2010 2011 2012 2015 2015

Table 1.1: Bosonic atomic species condensed to date, along with year achieved and
relevant publication. Dipolar species are indicated in boldface. Adapted from [12, 40].

1.1.1 BEC in a Uniform Potential

For purposes of experimental ease, the vast majority of ultracold atom experiments

are conducted in approximately harmonic potentials – such is the form created by

the Gaussian beams used in optical dipole traps (ODT) and by standard magnetic

traps.4 Yet from a theoretical perspective, it is not the harmonic but the uniform po-

tential in which BEC (and many other phenomena) can most readily be understood.5

As compared with uniform potentials, harmonic traps introduce an additional length

scale to physical phenomena related to the various trapping frequencies ωx, ωy, and

ωz,
6 and atomic cloud densities vary with position in inhomogeneous potentials.

Indeed, considerable effort has been put into the extraction of uniform system phe-

nomena from harmonic experiments, for instance through use of the local density

approximation (LDA) or by selectively studying only the center of a harmonically

trapped gas [44–47]. Despite these efforts, there remain important many-body phe-

nomena that simply cannot be adequately simulated in harmonic systems [48–51].

In particular, the LDA breaks down near phase transitions, making the study of

critical behavior difficult in harmonic traps; furthermore, the imposition of a har-

monic oscillator length becomes inconvenient in scenarios where other fundamental

length scales disappear (e.g. the study of unitary Bose gases, where the scattering

length a, which characterizes the strength of atomic interactions, diverges).7 Fi-

was never specifically highlighted in a publication.
4See, for instance, [42]. More generally, all trapping geometries are approximately harmonic for

small displacements from the minimum, except in those potentials where the quadratic term has
been specifically engineered away, e.g. in box potentials or those with high power laws rn, n > 2.

5Note the treatment of BEC in any undergraduate thermal and statistical physics text like [43],
as compared with the treatment in a specialized text like [9].

6This characteristic length is defined by li =
√
~/(mωi) along each axis.

7One nice feature of homogeneous unitary gases should be that the only relevant length scale
is the average interparticle spacing n−1/3.
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nally, in a uniform potential the BEC spreads out over most of the trap8 (unlike

in a harmonic trap, where the condensate tends towards the potential minimum

and spatially distinguishes itself from the thermal atoms), which allows for lower

densities and thereby minimizes three-body losses in, e.g., strongly interacting Bose

gases.

Recently in our group, the first demonstration of Bose-Einstein condensation

in a uniform potential was performed through the use of a spatial light modulator

(SLM) to alter the phase characteristics of trapping light [52, 53]. Early subsequent

experiments quickly revealed phenomena unobservable in harmonic systems [49–51].

The realization of a box potential has since been replicated in ultracold Fermi gases

[54], and homogeneous ultracold gas experiments have become increasingly common,

including in two-dimensional systems [55]. Building on these successes, it is our goal

in the experiment described here to implement uniform trapping geometries for a

dipolar gas.

1.1.2 Atomic Interactions and Dipolar BEC

Due to the relative simplicity of their internal energy structure and the corresponding

accessibility of closed cooling transitions, alkali atoms such as Rb, Na, Li, and K

have been the focus of a significant proportion of ultracold atom experiments to

date. In quantum gases of these atoms, interactions are purely s-wave and are

therefore describable as isotropic, short range contact interactions quantified by a

single parameter, the scattering length as.
9 The strength of these interactions can be

tuned with magnetic bias fields through the use of Feshbach resonances (FRs) [56–

58], and much of current research in alkali systems takes advantage of this convenient

phenomenon.

Studies with Rydberg atoms and polar molecules have allowed the introduc-

tion of long-range interactions to the cold atom toolbox, though both of these sys-

tems typically have short lifetimes. An alternative approach is to use atoms with

large magnetic dipole moments. Though their interactions exhibit weaker long-

range character than those of polar molecules, systems of ultracold dipolar atoms

are technically easier to realize and are comparatively long-lived. The dipole dipole

interaction (DDI) potential between such atoms takes the form (with the dipole

8At least in the presence of interactions. For a = 0 it should approach the shape of the trap
ground state.

9A detailed description of this theory, as well as that of Feshbach resonances, can be found in
[9].
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Figure 1.1: Schematic representation of the dipole-dipole interaction. (a) Plot of equa-
tion 1.3, where red sections correspond to repulsive interactions and blue sections corre-
spond to attractive interactions. Regions inside the black curves are made homogeneous
for plotting purposes; in reality the potential diverges towards r = 0. Note that the
potential vanishes at θcrit = arccos(1/

√
3) = 54.7◦. (b) Schematic representation of the

geometry of two polarized dipoles.

moments polarized along one axis) [59]

Udd(r) =
µ0µ

2

4π

1− 3 cos2 θ

r3
, (1.3)

where µ0 is the vacuum permeability, µ is the magnetic dipole moment, r gives

the relative atomic position, and θ is the angle between r and the polarization axis

(figure 1.1). It can immediately be seen that the DDI is long range and anisotropic,

in direct contrast to the contact potential described above.10 For direct comparison

to the s-wave contact interaction we define a ‘dipolar length’

add =
µ0µ

2m

12π~2
, (1.4)

where m is the particle mass [59]. The ratio of dipolar and contact length scales,

εdd = add/as , (1.5)

thus becomes a convenient quantity for keeping track of the important interactions

in a BEC (larger εdd implies more strongly dipolar characteristics). In particular,

add in equation 1.4 is defined so that a uniform, 3D condensate becomes unstable

10A potential of the form r−n, with n ≤ D, is typically considered long range for a D-dimensional
system [59, 60]; thus the DDI is long-range in three dimensions but short-range in one or two.
Contrast this with the van der Waals potential, −C6/r

6.
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to collapse when εdd ≥ 1 [59].11

Quantum degeneracy with strongly dipolar atoms was first achieved in 2005

using 52Cr (µ = 6µB, where µB is the Bohr magneton) by the group of Tilman

Pfau at the University of Stuttgart [31], and later in the lanthanide elements Dy

(µ = 10µB) and Er (µ = 7µB) by groups at Stanford University (Ben Lev) [37, 61]

and the University of Innsbruck (Francesca Ferlaino) [38, 62] in 2011 and 2012,

respectively. Experiments with chromium immediately demonstrated recognizably

dipolar phenomena, including changes to the aspect ratio of expanding atomic clouds

due to DDI [63, 64], a demagnetization cooling method related to the coupling of

spin and motional degrees of freedom [65], dependences in cloud stability on trapping

geometry [66, 67], and a dramatic d-wave collapse displaying the signature anisotropy

of the DDI [38, 68].

Despite these observations, in 52Cr the relative strength of DDI compared with

the s-wave contact interaction is small (εdd ≈ 0.16) [69]. By using a Feshbach res-

onance to decrease the latter to strengths comparable to the DDI, strong dipolar

effects could be observed [70]; nonetheless, in heavier, more strongly dipolar ele-

ments like Dy and Er, DDI can dominate (εdd ≥ 1) without the need to tune as

[37, 71], thereby avoiding the three-body losses associated with experiments near a

FR [37, 70]. Experiments in these systems have demonstrated exciting phenomena

such as dense Feshbach spectra indicative of quantum chaotic scattering [72, 73] and

the appearance of metastable ‘quantum droplets’ at large εdd [71, 74–76], including

the observation of a ‘scissors’ oscillation mode in such a droplet [77]. Further re-

cent advances include the study of an extended Bose-Hubbard model with DDI [78]

and an observation of first experimental signatures for the roton mode [79]. Fi-

nally, ultracold atoms with DDI were recently shown as an effective tool to study

thermalization behavior in near-integrable systems [80]. Various novel phenomena

predicted in dipolar BECs remain largely unexplored in experiments, making mag-

netic elements like erbium particularly attractive choices for new experiments like

that described in this thesis.

11Technically, for εdd ≥ 1 the Bogoliubov phonon-excitation frequencies become imaginary [59].
Intuitively, this dipolar collapse can be understood from the anisotropy of equation 1.3: polarized
dipoles sitting ‘head-to-tail’ (θ = 0) experience an attractive potential and collapse in the same
way as a BEC with negative as.
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Isotope 162Er 164Er 166Er 167Er 168Er 170Er

Statistics boson boson boson fermion boson boson
Abundance 0.14% 1.61% 33.6% 23.0% 26.8% 15.0%

Table 1.2: Natural abundances and quantum statistical behavior for all stable Er iso-
topes. Adapted from [41].

1.2 Erbium

Along with its large magnetic dipole moment of µ = 7µB (corresponding to add =

66a0, where a0 is the Bohr radius), erbium has several properties that make it an

appealing candidate for studies of ultracold dipolar gases. In particular, it has a

number of abundant bosonic and fermionic isotopes (table 1.2) which allow access

to different quantum statistics as well as a range of background s-wave scattering

lengths12; these can readily be tuned via an assortment of Feshbach resonances

available at low field [72]. Further, Er possesses several (nearly) closed electronic

transitions on which to efficiently laser cool.

Erbium has atomic number Z = 68 and, in the ground state, consists of a full

6s valence shell along with twelve 4f electrons (these partially filled, high-l orbitals

lend Er its large magnetic moment [41]). The ground state has total orbital angular

momentum L = 5, total spin S = 1, total angular momentum J = 6, and even

parity; it is notated [Xe]4f 126s2 (3H6). The energy level structure of erbium, up

to states 25000 cm−1 above the ground state, is shown in figure 1.2. The first

laser cooling work with erbium came in the mid 2000s from the group of Jabez J.

McClelland at NIST (USA), who identified five promising J → J + 1 laser cooling

transitions [81] before demonstrating broad [82] and narrow-line [83] magneto-optical

traps (MOTs) of Er. For the remainder of this thesis we focus on only the two

highest-energy cooling transitions identified, at 401nm and 583nm, respectively.

Because the fine structure (spin-orbit interaction) is comparable to the gross

structure (Coulomb interaction) in highly excited valence shells for lanthanides like

Er, the LS coupling scheme breaks down and we instead employ a special case of

jj-coupling. In this J1J2-coupling picture, the n = 6 valence electrons LS-couple

into a state with total angular momentum J2; all inner electrons similarly couple to

a total angular momentum J1. These two values then undergo the standard vector

addition to form a total angular momentum J ; the overall state is notated (J1, J2)J

12For 166Er, the background scattering length as is such that εdd ≈ 1, and εdd can be tuned
about this value with modest fields between 0 and 3 G [71]. Meanwhile in 168Er, which was first
condensed, as is about double add.
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Figure 1.2: Energy level structure of erbium, up to states with energy 25000 cm−1.
States of even parity are shown in red; those with odd parity are black. The two laser
cooling transitions used in the present work, at 401nm and 583nm, are highlighted. This
figure is loosely based on those in [41, 81].

.

[41]. For both the 401nm and the 583nm transitions, one 6s electron is excited to

a 6p orbital. The inner electrons couple to an L = 5 triplet state with J1 = 6.

Meanwhile, the two n = 6 electrons couple to an L = 1 state with J2 = 1. For

the broad 401nm (∼ 30 MHz natural linewidth) transition the spin state remains

a singlet (S = 0), while the 583nm transition is an intercombination line in which

the spin flips to a triplet state; its semi-forbidden nature13 lends the transition a

narrow linewidth of ∼ 200 kHz. Properties of these two excited states, along with

the ground state and electronic transitions between, are given in table 1.3.

A cursory glance at figure 1.2 suggests a dire outlook on the suitability of laser

cooling at 401nm. Indeed, there are over 10 intermediate states with J = 6 or

8 and even parity into which the excited state can decay, indicating a transition

that is far from closed. Luckily, it turns out that few of these decay pathways

are strongly E1-coupled [81], and an experimentally measured value for the decay

rate to all metastable states [82] gives a branching ratio of 9.1× 10−6. Meanwhile,

theoretically expected decay rates to two even-parity intermediate states for the

13The transition is electric dipole (E1)-allowed insofar as the ∆J and opposite-parity conditions
are satisfied. Traditional E1 transitions also require ∆S = 0, which fails here.
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State [Xe]4f 126s2(3H6) [Xe]4f 12(3H6)6s6p(1Po
1) [Xe]4f 12(3H6)6s6p(3Po

1)

J1J2-coupling J = 6 (6, 1)o7 (6, 1)o7
g-factor gJ 1.163801(1) 1.160 1.195

energy (cm-1) 0 24943.272 17157.307
wavelength – 400.91 nm 582.84 nm

nat. linewidth – 29.7(6) MHz 186(10) kHz
sat. intensity – 60.2 mW/cm2 0.12 mW/cm2

Doppler temp. – 713 µK 4.5 µK
uses g.s. ZS, TC, Imaging MOT

Table 1.3: Properties of the erbium states and cooling transitions of interest in this
thesis. The g-factor quantifies the Zeeman energy shift under the presence of an external
magnetic field B, ∆EZ = mJgJµBB, where mJ is the magnetic quantum number and µB
is the Bohr magneton. The Doppler temperature is given by TD = ~Γ/2kB, where Γ is
the natural linewidth; it reflects the lowest temperature attainable with the simplest laser
cooling techniques (see section 2.1.2). The saturation intensity is Isat = πhcΓ/3λ3, where
c is the speed of light and λ is the transition wavelength. Here g.s. stands for ground
state, ZS for Zeeman slowing, TC for transverse cooling, and MOT for magneto-optical
trap. Numbers taken (with minor rounding corrections) from [41].

583nm transition are on the order of 10−3 s−1 and therefore negligible [81].14

Following the precedent set by the Innsbruck Er experiment [41], we use the

broad 401nm transition for initial laser cooling and slowing of an Er atomic beam

due to its high scattering rate. We operate our magneto-optical trap (MOT) on the

narrow 583nm line, however, which yields lower temperatures.15

Other current ultracold erbium experiments include those at Innsbruck and Uni-

versität Bonn (group of Martin Weitz), both of which have achieved BEC [38, 84].

An Er quantum gas microscope is also being implemented at Harvard University

(group of Markus Greiner).16

14The branching ratio here is on the order of 10−9; i.e. one out of every billion scattered photons
leads to decay into a metastable state.

15An alternative approach was used, for instance, in the dysprosium experiment at Stanford,
which first loaded a MOT on the broad blue transition before transferring to a second MOT on a
particularly narrow line of ∼ 2 kHz [37].

16Experiments on dysprosium, erbium’s closely-related (but slightly more dipolar) cousin, are
more numerous. These include groups at Stanford, Stuttgart (group of Tilman Pfau) and
LENS/University of Florence (Massimo Inguscio), all of which have achieved BEC. Further Dy
experiments in progress include those at Innsbruck (Ferlaino group, whose 2nd generation experi-
ment has achieved BEC of Er and Dy in the same apparatus), MIT (group of Wolfgang Ketterle),
Paris (Jean Dalibard and Sylvain Nascimbene), and Mainz (Patrick Windpassinger).
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1.3 Outline of the Thesis

This thesis is structured as follows. Chapter 2 presents the theoretical background

for the various laser cooling and trapping techniques towards which the bulk of this

thesis has pushed. Chapter 3, meanwhile, describes the design of the experimental

apparatus and details of its physical construction. The material presented there

comprises the vast majority of the work undertaken over the course of this thesis,

and portions of this work are still ongoing. Finally, chapter 4 presents the first

measurements of an erbium atomic beam observed in the new apparatus, briefly

discusses possible future research projects suitable to the completed machine, and

concludes the thesis.



Chapter 2

Theory of Laser Cooling and

Trapping

In this chapter we describe the theoretical background necessary to understand the

principal aim of the work contained in this thesis: namely, to take atoms at or

above room temperature (∼ 102 − 103 K) and cool them to temperatures near 10−6

K. Section 2.1 describes the cooling and slowing methods relevant to this work while

2.2 describes the technique used to introduce spatial trapping of an atomic cloud.1

2.1 Laser Cooling

Traditionally, the consideration of atom-light interactions involves the discussion

of their effect on internal atomic states – in particular, radiation resonant with an

atomic transition will excite the atom to a higher energy level. Yet it is by exploiting

the effect of such a process on external momentum states that we are able to slow,

and thereby cool, atoms to low temperature.

The intuitive picture of this phenomenon is as follows. When an atom is excited

to a higher internal energy state, it absorbs a photon of momentum ~k, where

k = 2π/λ is the wavenumber of the photon. By momentum conservation, the atom’s

momentum increases by ~k in the direction of laser propagation. The photon is

then spontaneously emitted, applying another momentum kick to the atom in some

arbitrary direction. Over time, these momenta from spontaneous emission average

to zero, meaning that the only net force is from absorption: the atom is ‘pushed’ in

the direction of laser propagation.

1The 1997 Nobel Prize in physics was awarded to William Phillips, Steven Chu, and Claude
Cohen-Tannoudji in recognition of their contributions to the development of these processes.

11
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This process is quantitatively described for a two-level system in terms of a

scattering force,2

Fscatt =
~kΓ

2

s

1 + s+ (2δ/Γ)2
, (2.1)

where Γ is the linewidth of the transition, δ is the total detuning of the radiation from

resonance, and the saturation parameter, s = I/Isat, is the ratio of laser intensity

to saturation intensity. Note that the maximal force, Fmax = ~kΓ/2, corresponds to

photon scattering at half the natural transition rate – this is because at saturation

(s→∞) the population of the excited state is 1/2.

2.1.1 Zeeman Slowing

We begin by considering atomic slowing in one dimension. In practice, such a

technique is used to cool hot, collimated atomic beams to velocities at which other

cooling and trapping methods become effective, and it is an essential first step in

the erbium cooling process described in this work.

The principle of one-dimensional slowing is simple: propagate a resonant laser

beam opposite the direction of the atomic beam and let the scattering force decel-

erate the atoms to near-zero velocity. Due to the Doppler effect, however, the laser

frequency in the atomic frame changes as a function of velocity. To maintain the

resonance condition necessary for optimal slowing, we introduce a spatially varying

magnetic field tuned so that, by virtue of the Zeeman effect, the transition frequency

exactly matches the atomic-rest-frame laser frequency. The resulting device is aptly

named a Zeeman slower.3

The resonance condition in such a system4 is

ω + kv(x)︸ ︷︷ ︸
laser frequency
in atom frame

= ω0 +
µ′B(x)

~︸ ︷︷ ︸
transition frequency

, (2.2)

where ω is the laser frequency (in the lab frame), ω0 is the unperturbed transition

frequency, B(x) and v(x) are the magnetic field and velocity as functions of position

along the slower, and µ′ = (geme− ggmg)µB is the effective magnetic moment along

the transition, defined in terms of Landè g-factors g and magnetic quantum numbers

m of the ground and excited states, as well as the Bohr magneton µB. For slowing

2See, for instance, [42] for a derivation of this ubiquitous formula.
3The following section is based in part on a similar discussion in [41].
4For an atomic beam propagating in the +x direction and laser beam opposite.
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on the 401 nm |J,mJ〉 = |6,−6〉 → |7,−7〉 transition in erbium, µ′ = −1.1372.

Assuming this condition is satisfied, the atomic motion has constant acceleration

(from equation 2.1)

aZS =
Fscatt

m
≡ ηamax ≤ amax , (2.3)

where

amax =
~kΓ

2m
(2.4)

is the maximum possible acceleration (with m the mass of the atom) and

η =
s

1 + s+ (2δ/Γ)2
(2.5)

is the ‘security parameter.’ Since the detuning is zero given the resonance condition

in equation 2.2, η has its maximal value of ηmax = s
1+s

.

In practice, to account for experimental limitations such as imperfect magnetic

coil windings and varying laser intensity, as well as quantum fluctuations in the

scattering process, it is best to assume suboptimal scattering and therefore choose

a value of η less than ηmax. According to equation 2.5, this enforces a constant total

‘security’ detuning5

δsec = −Γ

2

√
s

η
− s− 1 , (2.6)

and we therefore modify the resonance condition (equation 2.2) to read

∆ + kv(x)− µ′

~
B(x) = δsec , (2.7)

where ∆ = ω − ω0 is the (lab frame) laser detuning.

Taking our constant-acceleration slower to bring atoms to zero velocity over a

length x0, we use simple kinematics to solve for the atomic velocity as a function of

position along the slower:

v(x) = vc

√
1− x

x0

, (2.8)

where

vc =
√

2aZSx0 =
√

2ηamaxx0 (2.9)

is the capture velocity (i.e. the maximum initial velocity that will be meaningfully

slowed by the device).

5The sign here ensures the that the slower is stable: for negative δ, if v(x) is larger than its
ideal value at a given x, the detuning increases towards zero (eqn. 2.7), thereby causing the atom
to scatter more photons and slow more quickly.
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To solve for the magnetic field, we insert equation 2.8 into equation 2.7 and

rearrange. The result is a square-root dependence of the magnetic field on position:

B(x) = Bb +B0

√
1− x

x0

, (2.10)

where the bias field Bb and amplitude B0 are given by

Bb =
~
µ′

(∆− δsec) and B0 =
~k
µ′
vc . (2.11)

Evidently we are able to adjust the capture velocity (or, equivalently, η) by tuning

B0. The bias field and laser detuning, meanwhile, are mutually interdependent,

and their values can be chosen for experimental convenience.6 For a more detailed

treatment of Zeeman slowing theory, see appendix A.

There are three regimes in which the Zeeman slower can be operated (figure

2.1): increasing-field (Bb ≈ −B0), decreasing-field (Bb ≈ 0), and spin-flip (0 <

|Bb| < |B0|) [85]. In the first, the magnitude of the field is greatest at the end of

the slower, meaning that atoms quickly fall out of resonance with the slowing light

after the slower and proceed to the MOT unhindered. At the same time, though,

the laser detuning must equal the Doppler shift of the fastest atoms to be slowed

(a technically difficult 1.25 GHz for 500 m/s erbium atoms), and the large field

at the MOT end of the slower makes reducing its magnitude to zero at the MOT

center difficult. Decreasing-field slowers, meanwhile, require small laser detunings

and small fields near the MOT, but atoms fail to quickly fall off resonance with

the laser past the end of the slower, resulting in additional slowing that can, in a

worst-case scenario, reverse the direction of the atoms before they reach the MOT.

Our choice of slower – in the spin-flip configuration – represents a happy medium

between the two: the laser detuning is modest and achievable with one double-pass

AOM (∆ ≈ −2π × 540 MHz in our setup), the atoms quickly drop off resonance

at the end of the slower, and the magnetic field at the MOT end is not so large

as to significantly interfere with MOT operation (provided we introduce modest

compensation fields). The disappearance of a well-defined quantization axis at the

zero-crossing of the magnetic field presents problems in principle, but practically

6The η-dependent detuning δsec is typically small compared to ∆ and is fully determined by
B0; i.e. the value of Bb cannot change η. Altering the relationship between Bb and ∆ can be
useful, however: for a given Bb, adjusting ∆ in equation 2.7 necessitates a compensating ‘velocity
offset’ term k∆v to maintain the equality, and in this way we get a non-zero final velocity (another
way to achieve this is to simply have the field drop to zero before x = x0). See section A.2 in the
appendix.
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Figure 2.1: Magnetic field profiles for various types of Zeeman slowers: (a) increasing-
field, (b) spin-flip, and (c) decreasing-field. Notice that here B0 is negative, corresponding
to the fact that µ′ < 0 for the cycling transition (|6,−6〉 → |7,−7〉) used in our slower.

speaking atoms are optically pumped to the desired cycling transition quickly enough

upon reestablishment of a field axis that they do not come far off resonance in the

interim.

2.1.2 Optical Molasses

While Zeeman slowing allows us to cool and slow an atomic beam along its axis,7

it does little to alter the transverse profile. In order to also cool the radial dimen-

sion(s), we employ a simple technique known as optical molasses. Making use of

the scattering force, we simply point pairs of counter-propagating laser beams, of

frequency ω, along the axes where cooling is desired. In order to ensure that an

atom of nonzero velocity preferentially interacts with the photons opposing its mo-

tion (rather than those that will tend to speed it up, which exist in equal numbers),

we red-detune the laser radiation, so that ω < ω0. By virtue of the Doppler effect, a

moving atom will then preferentially scatter photons that tend to slow it down – in

an ensemble of many atoms, this leads to a narrowing of the velocity distribution,

i.e. a cooling of the cloud.8

7ZS not only slows but also cools because atoms of different initial velocities exit the slower
with similar final velocities, narrowing the distribution.

8Note that, while it’s easier to think of temperature in an ensemble of atoms (which is Maxwell-
Boltzmann distributed at any given time) an individual laser-cooled atom can also be said to have
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We make this picture quantitative by once again considering the scattering force

acting on the atom.9 Along each principal axis, this is given by10

Fmol(v) = ~kRscatt(ω − ω0 − kv)− ~kRscatt(ω − ω0 + kv) , (2.12)

where

Rscatt(δ) =
Γ

2

s

1 + s′ + (2δ/Γ)2
, (2.13)

s′ = 2NI/Isat represents a crude attempt at accounting for saturation effects from

all 2N lasers, and δ is the total detuning. For kv � Γ (slow atomic velocities),

expanding eqn. 2.12 gives

Fmol(v) ≈ −αv , (2.14)

with the damping coefficient given by

α =
4~k2

Γ

(
∂Rscatt

∂δ

)
δ=∆

= −4~k2s
2∆/Γ

[1 + s′ + (2∆/Γ)2]2
(2.15)

For negative detuning, this is a linear damping force similar to that acting on an

object moving through a viscous fluid, lending the cooling method its name.

The damping force implies an exponential decrease in the atom’s kinetic energy

with time constant τcool = m/2α:(
dE

dt

)
cool

=
d

dt

(
p2

2m

)
= vFmol(v) = −αv2 = −2α

m
E (2.16)

=⇒ E(t) ∝ e−t/τcool

This cooling, which would otherwise asymptotically lead to zero temperature, is bal-

anced by heating due to the random-walk character of single-photon absorption and

emission events, which each give momentum-space random walks 〈p2〉 ∝ ~2k2Rscattt.

As discussed in [42, 86], these processes lead to heating given in three dimensions

a temperature insofar as its time-averaged velocity distribution is thermal [86].
9The discussion below roughly follows those of [42, 86].

10This treatment assumes that the two laser beams act independently, i.e. s� 1. Nonetheless,
below we (at least initially) crudely account for saturation effects from the other beams. A more
precise treatment requires the consideration of counter-propagating beams as standing waves and
atoms as multi-level (rather than two-level) systems – these effects lead to various sub-Doppler
cooling processes not considered here [42, 86].
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by11 (
dE

dt

)
heat

=
1

2m

d〈p2〉
dt

= 2~2k2Rscatt/m (2.17)

Equating the heating (eqn. 2.17) and cooling (eqn. 2.16) rates yields an equilib-

rium temperature12

kBT = mv2 =
2~2k2Rscatt

α
=

~Γ

4

1 + (2∆/Γ)2

2|∆|/Γ
(2.18)

where we have assumed s ∼ s′ << 1 (reflecting a necessary condition for treating

the cooling beams independently). This is minimized when the detuning is half the

linewidth, ∆ = −Γ/2, and gives the Doppler cooling limit :

kBT =
~Γ

2
(2.19)

The minimum temperature achievable through optical molasses, or Doppler cooling,

is therefore equal to half the linewidth of the cooling transition.

2.2 The Magneto-Optical Trap (MOT)

Though optical molasses provides effective cooling of atomic clouds, it acts exclu-

sively in velocity space, meaning that atoms are free to spatially diffuse wherever

they please. In order to add spatial confinement, we can introduce a position-

dependent magnetic field; the result is the aptly named magneto-optical trap (MOT)

[21], which has become a ubiquitous workhorse in atomic physics as the starting

point for a vast number of experiments.

The fundamental principle of the MOT can be understood through a 1D model

consisting of a two-state atom with ground state angular momentum F = 0 and

excited angular momentum F ′ = 1.13 As for optical molasses, the atom interacts

with two counter-propagating, red-detuned lasers. Here, however, the laser propa-

gating in the + (−) x direction has σ+ (σ−) polarization so as to drive transitions

from mF = 0 → mF ′ = +1 (−1). Finally, we introduce a constant magnetic field

gradient B(x) = b′x, which splits the magnetic sublevels in a spatially dependent

11There should be slightly less heating in two dimensions, given that some photon emission
events occur along the third axis and heat the atoms in a direction we can effectively ignore.

12Using the equipartition theorem with one degree of freedom for the one axis under considera-
tion.

13This is easily generalized to any system for which F ′ = F + 1.
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Figure 2.2: Principle of MOT operation. Because of the lasers’ red detuning and the
magnetic field gradient, atoms at positions x < 0 are more likely to absorb light from
beam 1 (σ+-polarized and propagating in the +x direction), while atoms at x > 0 will
more probably scatter from beam 2. This leads to a spatially dependent force that tends
to confine the atoms near the origin.

manner (they are degenerate at the origin).14

As can be seen from figure 2.2, the red-detuning of the cooling lasers, combined

with transition selection rules and the spatial dependence of the B field, ensures

that an atom offset from the origin will always preferentially scatter photons from

the laser that tends to push it back to x = 0. Furthermore, the red detuning also

typically allows Doppler cooling as described above, so atoms experience feedback in

both position and velocity space. The MOT is easily extended to three dimensions

by adding two more pairs of counterpropagating beams and using a quadrupole

magnetic field, which results in gradients −2dBx

dx
= −2dBy

dy
= dBz

dz
along the three

principal axes (see section 3.5.1).

2.2.1 Narrow-Line Trapping

For a typical MOT used in, e.g., cold atom experiments with alkali atoms, the

cooling transition has a linewidth of order several MHz and the laser detuning is

set such that |∆| ≈ Γ. This leads to a radiative force that depends linearly on

position near the center of the trap, and the behavior of the MOT is well described

14Here and in figure 2.2 we adopt a lab-frame picture in labeling atomic states and laser polar-
izations. In the atom frame at positions x < 0, the quantization axis flips to align with ~B, and the
lowest-energy state is still mF = −1. However, because the quantization axis is reversed, the laser
polarization is also reversed, so that now the +x-propagating light is σ− polarized, and vice-versa.
This choice therefore amounts to a labeling convention, while the underlying physics is unchanged.
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by a damped harmonic oscillator (see, for instance, [21, 42, 87]). In contrast to this

typical scenario, in the present experiment – motivated by a desire to achieve lower

final MOT temperatures15 and thereby avoid sub-Doppler cooling steps later in the

experimental sequence – we choose to trap on the narrow intercombination line of

erbium at 583 nm, with natural linewidth Γ/2π = 190 kHz. Partly because of the

fact that our laser linewidth is of order Γ (so that for |∆| < Γ some of the laser light

will be blue detuned and therefore anti-confining), for such a narrow transition we

operate in the regime where |∆| � Γ throughout the MOT loading and compression

process. In this regime, the intuitive picture of MOT operation is entirely distinct

from that of more traditional broad-line traps.

We begin by considering the relevant forces in the problem. In most wide-

line MOTs, the scattering force is large enough to neglect both gravitational and

magnetic forces, but in our case we must proceed more carefully. Here, the ratio

of scattering to gravitational forces is about 250 (compared with ∼ 5× 104 for the

401nm transition), and due to the large ground-state magnetic moment of Er, the

ratio of scattering to magnetic forces is also small compared with a standard MOT

(about 340 in this case). In the regime where |∆| > Γ it is important that we take

both of these conservative forces into account.

The force on an atom in our trap along the z axis (defined opposite gravity) is

given by [41, 83, 88]

FMOT(z, vz) = Fscatt + Fgrav + Fmag =

~kΓ

2

[
s

1 + s′ + 4(∆− kvz − |µ′∂zBz| z)2/Γ2

− s

1 + s′ + 4(∆ + kvz + |µ′∂zBz| z)2/Γ2

]
−mg −mgggµB∂zBz , (2.20)

where ∂zBz = ∂Bz/∂z is the magnetic field gradient, µ′ = (mege −mggg)µB/~ is the

effective magnetic moment of the cooling transition,16 s′ ≥ s accounts for saturation

due to the beams along other axes, and g = 9.8 m/s is the gravitational acceleration.

Figure 2.3a shows plots of this force for fixed s = s′ = 12 and several values of

15Recall that the final MOT temperature is roughly given by the Doppler temperature, TD ∝ Γ,
which is roughly a factor of 150 smaller (4.6 µK vs. 714 µK) for the 583 nm transition than for
the broad one at 401 nm.

16We take the absolute value of this and the gradient in equation 2.20 for clarity in establishing
the sign of various terms. Note also that here we define me and mg as projections along the +z

axis, even though at times this is opposite the direction of ~B.
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Figure 2.3: (a) Vertical MOT force (eqn. 2.20) as a function of position for vz = 0,
s = s′ = 12, dBz/dz = 3 G/cm, and two values of the detuning |∆| > Γ and |∆| = Γ.
In the large-detuning regime, the atoms effectively fly in free space surrounded by two
hard walls. Gravity and the magnetic force break the symmetry, however, leading to
a small negative force in the free-space regime (not visible on this scale) that causes a
‘gravitational sag’ (b). Part (b) reproduced, with small modifications, from [41].

∆. The atoms preferentially interact with the upward-pointing beam because of

the non-negligible gravitational potential, which drags them downwards. For σ−

polarization (corresponding to a negative vertical gradient, in which the field points

down for z > 0 and up for z < 0), the atoms are therefore pumped into the mJ = −6

ground state, and the magnetic force becomes anti-confining, summing with the

gravitational force to push the atoms further down.

Because of these combined gravitational and magnetic forces, the atoms sit below

the x-y plane, on an equipotential of constant Zeeman shift where FMOT = 0, i.e.

where the scattering force from the upward-pointing beam balances the combined

gravitational and magnetic forces (figure 2.3b). Ignoring the downward-pointing

beam (which is far detuned for vz ≈ 0 and z < 0), we can solve equation 2.20 for

the equilibrium position z0, given by

∆− |µ′∂zBz| z0

Γ
= −
√
Rs− s′ − 1

2
(2.21)

where

R =
~kΓ

2 (mg −mgggµB |∂zBz|)
(2.22)

is the ratio of the maximum scattering force to the combined magnetic and gravi-

tational forces.

To determine the equilibrium temperature of the MOT we take the same ap-
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Figure 2.4: MOT temperature calculated from equation 2.25 for the narrow 583 nm
line as a function of the saturation parameter s = s′. A small gradient dependence arises
from the magnetic force term in R (equation 2.22); this results in a horizontal offset of
the temperature minimum (inset) but no notable temperature increase. In all cases for
saturation parameters around s = 0.01 we achieve temperatures approximately equal to
TD = 4.46 µK.

proach as in section 2.1.2, beginning by finding the damping coefficient αz about

this equilibrium point (z = z0, vz ≈ 0). To first order, expanding FMOT ≈ −αzvz
gives [88]

αz = −2~k2

√
Rs− s′ − 1

R2s
(2.23)

The heating rate is described by a single-beam random walk due to absorption and

scattering events, with diffusion coefficient [86, 88]17

Dp =
1

2

d〈p2〉
dt

= ~2k2Rscatt =
~2k2Γ

2R
(2.24)

where in the last equality we have substituted equation 2.21 into Rscatt (eqn. 2.13).

Balancing damping and diffusion gives the (z-axis) equilibrium temperature [88]

Tz = − Dp

kBαz
=

~Γ
√
s

2kB

R

2
√
R− s′/s− 1/s

≈
(
~Γs
2kB

)
NR = TDNR (2.25)

where Γs = Γ
√

1 + s is the power-broadened linewidth and we have approximated
√

1 + s =
√
s for large s. TD is the Doppler temperature (equation 2.19) and NR is

a numerical factor of order 1 (figure 2.4).

17This describes purely 1D diffusion, which is a reasonable approximation for atoms sitting near
equilibrium, since they hardly interact with the x-y beams.
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As discussed in [89], because the atoms sit in a nonzero bias field at equilibrium

due to their z-axis offset from the origin, we have to treat the radial (x-y plane) beam

polarizations in terms of their respective projections onto the quantization axis,

which is tilted at a small angle α ≈ (x2 + y2)1/2/z0 = r/z0 from the z axis. Whereas

in the absence of a bias field the x-y behavior of the atoms is characteristic of free

space motion bounded by hard walls (located at x0 = ∆/µ′∂xBx), its introduction

means that each radial laser has a σ− polarized component (defined with respect

to the tilted quantization axis) and is no longer far-detuned even at small r.18 As

it turns out, this component is always largest for the laser tending to push the

atom back towards the origin, and the result is a harmonic potential in the radial

directions. Moreover, the radial equilibrium temperature is actually (though not

obviously) equal to the vertical temperature (equation 2.25) [89].

While low Doppler temperatures and straightforward spin polarization are defini-

tive advantages of the narrow MOT, these boons come with the consequence of re-

duced capture velocity vc. Indeed, an upper bound on vc is set by the maximum

scattering acceleration amax = ~kΓ/2m so that vc, max =
√

2amaxl, where l is the

interaction distance roughly given by the MOT beam diameter [89].19 For 28.5

mm beam diameters, this gives about 180 m/s for the 401 nm transition but only

11.6 m/s for the 583 nm line. Nonetheless, velocities under 10 m/s are achievable

with a well-designed Zeeman slower, so this low capture velocity is not particularly

problematic.

We finally turn to the realization of this MOT in the laboratory, in particular

by determining the MOT parameters we expect to use and the capture velocities we

expect to attain. In the first phase of operation we aim to simultaneously optimize

the capture velocity of the MOT and allow a gravitational sag large enough so that

the atoms sit below the Zeeman slowing beam waist of wZS ∼ 5 mm.20 This is

given by the condition |z0| ≤ wZS with z0 from equation 2.21. Further, it is shown in

18In the absence of a bias field the quantization axis is defined by ~r for any radial offset r 6= 0
from equilibrium, and the small B value at small r means that the Zeeman shift is small compared
to the laser detuning; i.e. the total detuning is large. With the bias field, however, the Zeeman shift
at position (r, z0) for small r is approximately equal to its value at equilibrium (0, z0); therefore
the total detuning is relatively small and the atoms immediately interact with the σ− component
of the radial lasers.

19One should be careful to note that this maximum capture velocity is never achievable with a
MOT: as we have seen above, to maintain constant, maximum acceleration over the whole slowing
process requires a square-root B profile, whereas a MOT is bound to a linear profile.

20Corresponding to a 10 mm 1/e2 beam diameter.
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appendix A.3 that in order to capture any atoms we need a minimum radial gradient

dBx

dx
&

2 |∆|
|µ′| l

(2.26)

where l is again the interaction length, which for sufficiently large s is given by

approximately twice the 1/e2 MOT beam diameter.21 Combining these two con-

ditions, for realistic parameters of s = 12, beam diameter 2w0 = 28.5 mm and

l = 1.8 × (2w0),22 this gives a minimum detuning ∆ = −6.5 MHz = −35Γ and

corresponding vertical gradient of −2dBx

dx
= −2.6 G/cm. Figure 2.5a shows nu-

merical simulations of the capture behavior23 for parameters of ∆ = −7 MHz and
dBz

dz
= −3.2 G/cm, which allow some leeway over the absolute minimum results and

still give z0 = −5.2 mm < −wZS.24 For this particular configuration we expect a

capture velocity of 7.2 m/s, though in other configurations we can achieve vc above

9 m/s (figure 2.5b-d).

While we will load the MOT in this far-detuned, high-s regime, from eqn. 2.25

and figure 2.4 it is clear that minimizing the temperature requires very low s ∼ 0.01.

Therefore, in a later stage we will ramp down the intensity, gradient, and detuning

(following [41]) to move the atoms up towards z = 0 and cool them towards the

Doppler temperature. It is also likely necessary to apply a small bias field, which

offsets the quadrupole minimum and pushes the atoms the rest of the way up to the

x-y plane.

21As the atom moves forward the saturation intensity decreases but the atom also slows, and
the resulting increased interaction time per position interval dx compensates for the decrease in

maximum deceleration ηMOT = s/(1 + s) =
s0 exp(−2x2/w2

0)

1+s0 exp(−2x2/w2
0)

. Accordingly, the slowing continues

effectively even to very small ηMOT on the order of 1/e4 of its maximum value; for s0 = 12 this
occurs at x = 1.8w0, where w0 is the MOT beam waist.

22See previous note.
23Simply obtained by numerically solving the x-axis equivalent of equation 2.20, which omits

the gravity term.
24The elevated gradient also leads to a slightly higher capture velocity – see appendix A.3 for a

simple argument why this might be the case.
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Figure 2.5: Numerically simulated narrow-line MOT capture behavior. (a) Atom tra-
jectories for various initial velocities in a MOT with ∆ = −7 MHz, dBz/dz = −3.2 G/cm
and s = s′ = 12. All captured atoms fall onto the same trajectory, which roughly fol-
lows the linear behavior of B(x). Gray arrows represent the vector field in phase space
corresponding to FMOT(x, vx). (b) Dependence of the capture velocity on radial gradient
dBx/dx = −0.5dBz/dz and laser detuning ∆ for s = s′ = 12. The dashed line roughly
corresponds to the critical gradient condition in equation 2.26 with l = 1.5 × (2w0) and
a small vertical offset, reflecting the fact that equation 2.26 is only approximately cor-
rect. (c) Cut of the parameter space in part (b), showing the maximum capture velocity
as a function of the radial gradient, with the laser detuning that maximizes vc. We see
that the maximum capture velocity for this MOT at s = s′ = 12 is 9.1 m/s, achieved
at dBz/dz = −4.4 G/cm and ∆ = −10.8 MHz, corresponding to z0 = −8.6 mm. (d)
Maximum MOT capture velocity as a function of the saturation intensity, calculated by
finding the highest point in the gradient-detuning parameter space of part (b) for each
value of s. The curve, somewhat expectedly, goes roughly like s/(1 + s), meaning that
higher saturation intensities yield diminishing returns.



Chapter 3

Experimental Design and

Implementation

In this chapter, we summarize the design and construction of the erbium experiment.

Section 3.1 gives an overview of the full experimental design, many pieces of which

are currently realized and some of which are planned for the near future. Section

3.2 outlines the system used to achieve high (HV) and ultra-high (UHV) vacuum in

several chambers needed for the cooling, trapping, and manipulation of ultracold Er.

Section 3.3 describes the lasers and optics used for Er cooling and trapping. Section

3.4 details the implementation of a Zeeman slower that decelerates Er atoms, in one

dimension, from ∼ 500 m/s to near zero velocity. Finally, section 3.5 discusses the

design and implementation of the various magnetic fields required at and around

the MOT chamber.

3.1 Experimental Overview

At the highest level, our erbium experiment is designed following the successful

approach taken at Innsbruck [41], with several key modifications tailored to our

specific scientific goals. The starting point is an atomic beam of Er atoms, created by

heating erbium metal to ∼ 1200◦C in order to overcome low vapor pressures at room

temperature.1 The beam is mechanically collimated through a series of apertures

and then radially cooled in a 2D molasses before passing through a Zeeman slower

(section 3.4) for capture in a MOT. While the 2D molasses (or “transversal cooling”)

and Zeeman slowing are run on the broad 401 nm transition for maximum cooling

1The melting point of Er is 1522◦C , which is suggestive of the impossibility in achieving a
substantial gaseous sample near room temperature.

25
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Figure 3.1: Overview of the main experimental apparatus, with important sections
labeled and discussed in more detail below. The two main vacuum sections are labeled
HV and UHV for (ultra-)high vacuum. TC stands for transverse cooling, ZS for Zeeman
slower, and MOT for magneto-optical trap. All pictured components have been assembled
with the exception of the science cell, which will be added in several months’ time.

efficiency, the MOT is operated on the narrow, 190 kHz-natural-linewidth transition

at 583 nm in order to achieve low temperatures around 10 µK. This eliminates the

need for sub-Doppler cooling techniques and allows us to load directly into an optical

dipole trap (ODT) formed from high-intensity red-detuned light at 1030 nm.2 Using

focus-tunable lenses [90], we will be able to spatially match the size of the ODT beam

to the MOT for optimal loading and then translate the ODT roughly 30 cm from

the MOT chamber to an all-glass science cell [91]. Here we will cool the atoms to

degeneracy via forced evaporation; the all-glass chamber will allow sufficient optical

access for the implementation of arbitrary (typically uniform) potentials and optical

lattices. Finally, we have allowed room to eventually connect a 2D MOT to the main

MOT chamber, which will be used to introduce an alkali species for, e.g., impurity

studies in dipolar gases. Figure 3.1 gives an overview of the complete apparatus.

3.2 Vacuum System

The vacuum system contains two main sections: a high-vacuum (HV, ∼ 10−9 mbar)

side containing the source oven and a radial pre-cooling stage, and an ultra-high

vacuum (UHV, ∼ 10−11 mbar) section which includes the MOT chamber and, even-

tually, a science cell.3

2We choose to trap at 1030nm rather than in the more common 1064-1070nm range because of
an Er transition at 1069.5nm that could lead to unwanted heating in the trap, particularly in the
fermionic 167Er isotope (this phenomenon is observed in [41], though no explanation is offered).

3The vacuum system was designed and constructed almost exclusively by Milan Krstajic [92].
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On the HV side, we start with erbium metal in a tantalum crucible which is

heated to 1100-1200◦C in a high-temperature oven.4 The atoms exit through a

forward-facing 3mm aperture and are mechanically collimated by another 8mm

aperture slightly downstream. They then pass through a cube with four 35mm

viewports through which we can apply 2D molasses/transversal cooling light. After

the TC stage there is a six-way cross with three viewports which can be used for

beam characterization. A valve separates the HV section from the remainder of the

vacuum system should it be necessary to bring one side up to room pressure (e.g.

to load more erbium into the oven).

Between the HV and the UHV sections is a 56cm-long, 8mm-diameter tube,

around which we wind and water-cool the Zeeman slower coils (section 3.4). One

can think of vacuum systems in analogy with electrical circuits: pressures are volt-

ages, leaks and out-gassing are current sources, pumps are ground, and intermediate

components have different conductivities. The long, narrow ‘differential pumping’

tube in our system has a very low conductivity and accordingly allows a pressure

drop of up to two orders of magnitude between the HV and UHV sections.

The centerpiece of the UHV section is the MOT chamber, which has six 40mm

viewports (two in the vertical direction and four in the radial plane) for the MOT

beams, as well as several 16mm viewports for imaging and other optical access (e.g.

for the optical transport beam that will later be implemented). It is machined from

non-magnetic 316LN stainless steel,5 and an indentation is made around both ver-

tical viewports to allow the installation of coils near the atoms. A 16mm-diameter,

∼ 30cm-long tube connects the MOT chamber to the (planned) science cell. Another

arm of the chamber is currently valved off but will eventually allow the introduction

of a 2D MOT with an alkali species. A final arm, opposite the differential pump-

ing/Zeeman slowing tube, contains an aluminum mirror which is used to align the

ZS beam into the chamber. This is used in lieu of a window with direct access, which

would quickly be coated with Er metal and rendered opaque. It has been shown in

similar experiments that in-vacuum mirrors coated with metal exhibit only slightly

diminished reflectivity [41, 93].

We maintain vacuum using three combined NEG/ion pumps. The fastest pump6

is placed adjacent to the MOT chamber, while two weaker pumps7 are placed in the

HV section and between the MOT chamber and science cell, respectively. We expect

4Dual Filament Cell, model DFC-40-10-WK-2B-SHE, from Createc.
5Nominal relative permeability < 1.005.
6Nextorr D 300-5, from SAES Getters.
7Nextorr D 100-5, from SAES Getters.
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with this system to achieve pressures of < 3×10−11 mbar in the MOT chamber and

< 8 × 10−12 mbar in the science cell. See [92] for more details on the design and

assembly of the vacuum system.

3.3 Optical System

The optical systems for Er laser cooling must accomplish three principal tasks for

light at each of the cooling wavelengths. The first is to stabilize the laser frequency,

with respect to both short-time fluctuations and long-term drifts, at a known po-

sition relative to the transition frequency.8 The second is to precisely tune the

frequency of individual beams to achieve the detunings required for cooling and

slowing. The third is to distribute cooling light to the vacuum chamber and sculpt

the beams’ spatial profile prior to interaction with the atoms. Sections 3.3.1 and

3.3.2 describe the laser and optical setups for 401 nm and 583 nm light, respectively,

while section 3.3.3 describes the the frequency stabilization (laser locking) technique

used for both wavelengths.

3.3.1 401 nm Optical Setup

The 401 nm light is derived from an M-Squared laser system consisting of a titanium-

sapphire (Ti:sapph) crystal and frequency doubling cavity. The narrow-linewidth

Ti:sapphire laser9 is pumped by 15W of 532 nm light from a diode-pumped solid

state laser10 and produces approximately 5W at 802 nm. This is then sent to a

frequency-doubling cavity11 to deliver approximately 2W of 401 nm light.

For 401 nm laser cooling and imaging we need light resonant with the erbium

transition for spectroscopy/locking and absorption imaging, light detuned by ap-

proximately −10 MHz (≈ Γ/3) for transverse cooling/2D molasses (TC), and light

detuned by approximately −540 MHz for Zeeman slowing (ZS). This is achieved

with 2 acousto-optic modulators (AOMs)12 operated at 270 MHz in double-pass

configuration. The first double-pass setup shifts the frequency by the ZS detuning,

−∆νZS ≈ +540 MHz (see section 3.4), before sending it to the spectroscopy setup

8This is typically done by locking directly to the atomic transition, as is the case here, though
sometimes a lock is achieved on an ultra-stable cavity mode offset from the transition.

9M-Squared SolsTiS module, consisting of the Ti:sapph crystal and resonant bow-tie cavity.
10Lighthouse Photonics Sprout G-15W.
11M-Squared ECD-X second-harmonic generation (SHG) cavity and crystal.
12Gooch & Housego, AOMO 3270-125, f0 = 270 MHz. These are driven with voltage-controlled

oscillators (VCOs) fed into ∼ 28 dB amplifiers (Mini-Circuits ZFL-1000VH2B+).
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for locking (section 3.3.3). This means that the direct laser output is detuned by

∆νZS and can be immediately fiber-coupled and sent to the experiment table for

Zeeman slowing. Another branch of laser light is sent through a second double-pass

AOM setup and used for both TC and imaging, as these frequencies are similar and

we never require simultaneous transverse cooling and atom-cloud imaging. For TC

operation, the frequency shift is ∆νTC − ∆νZS ≈ +530 MHz and for imaging it is

equal to −∆νZS. Shutters are used to select the appropriate beam path following

the AOM setup. Figure 3.2a illustrates this portion of the optics.

After frequency shifting, the various beam paths are coupled into polarization-

maintaining fiber and sent to the experiment table. Because of the small beam

diameters (around 3 µm) required for single-mode fiber coupling at 401 nm, as well

as photodarkening effects/color center formation in optical fiber at UV and near-UV

wavelengths [94, 95], special caution has to be taken in fiber selection. In particular,

we use standard, low-power Thorlabs fiber13 for imaging and spectroscopy light

(both of which can be limited to under 10 mW), but we use 3 higher-power fibers14

to separately couple ∼ 100 mW for each of the (two) TC beams and (one) ZS beam.

In order to maximize the interaction time of atoms with the transverse cooling

(TC) beams we send them through a series of spherical and cylindrical lenses15

that produce elliptical beams with tunable dimensions in a range around 3mm wide

× 35mm long (the length is limited by the CF40 viewports used for TC). While

the TC light polarization is not important from an atomic-energy perspective (all

levels are effectively degenerate at this point), we use quarter-waveplates to produce

circularly polarized light and therefore avoid the creation of standing waves/intensity

minimums in the chamber, which will diminish cooling effectiveness.

For the Zeeman slower we use an f = 100mm lens, placed a distance L & f

from the diverging fiber output, that allows us to create a slightly convergent beam

with the desired diameter through the slower. We can tune the angle of convergence

by adjusting L and change the beam diameter through the ZS by translating the

whole setup (on a cage system) with respect to the chamber. A λ/4-waveplate and,

optionally, a linear polarizer in the beam path enforce σ− polarization. Both TC

and ZS optical setups are shown in figure 3.3.

13Thorlabs PM-S405-XP Panda-style fiber with FC/APC connectors.
14Schäfter+Kirchoff, PMC-E-400Si-2.8-NA011-3-APC.EC-700-P, pure silica core fiber with

300µm end caps for increased power handling at the coupling interface. The limiting power-
handling factor for these fibers is stimulated Brillouin scattering, which caps power transmission
at about 150 mW.

15This lens system was designed by Milan Krstajic, though I built the optical setup.
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Figure 3.2: Distribution and frequency shifting setup for (a) 401 nm and (b) 583 nm laser
cooling light. In the above, AOM stands for acousto-optic modulator, TC (V/H) for ver-
tical/horizontal transverse cooling, ZS for Zeeman slower, spect. for spectroscopy/locking
setup, λ/2 for half waveplate, and λ/4 for quarter waveplate. In the key, PBS is polarizing
beamsplitter, PX is plano-convex lens, f.c. is fiber coupler, Ap. is aperture/iris, and Shutt.
is mechanical shutter. Note that optical path lengths are not necessarily to scale.

Figure 3.3: Basic optical paths of cooling beams used for (a) transverse cooling, (b)
Zeeman slowing, and (c) the MOT. For TC, the two spherical lenses can be adjusted to
obtain collimated beams with 1/e2 diameter between 2 and 5 mm. The cylindrical lens
setup consists of two plano-concave and one plano-convex lens and can be tuned to achieve
single-axis magnification between 8× and 12×. This setup is used for each of the two TC
beams. For ZS, the single 100 mm plano-convex lens can be moved to change the beam
convergence through the slower, while the fiber coupler and lens can be moved together
to change the beam diameter through the ZS. The single 150 mm plano-convex lens for
each of the MOT beams collimates the fiber output to 28.5 mm 1/e2 diameter; this setup
is repeated six times.
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3.3.2 583 nm Optical Setup

The 583 nm light used for the erbium MOT is produced by a Toptica system16

consisting of a tunable diode laser (DL pro) and tapered amplifier (TA pro) that

together can produce ∼ 2 W at 1166 nm, followed by a SHG frequency doubling

cavity that outputs about 600 mW of 583 nm radiation as presently operated.17 The

beam immediately passes through a 2/5× telescope that reduces its size to below

that of the AOM apertures used for frequency shifting.18

The detunings required for the MOT can be anywhere between 0 and 15 MHz,

which are not achievable with a single AOM. Therefore, we use two 80 MHz AOMs19

in double-pass configuration to first shift the light away from resonance and then

bring it nearly all the way back. This is accomplished in two ‘arms’ of the optical

setup, in a manner analogous to that used for the TC light at 401 nm. In the first

arm, we shift the light used for spectroscopy and locking by ∆νspect ≈ +160 MHz

before fiber coupling20 and sending it to the spectroscopy setup. The second branch

is shifted via another double-pass AOM setup by ∆νspect − |∆νMOT| ≈ 155 MHz

(e.g. for a -5 MHz MOT detuning). This is then coupled into a fiber and sent to the

experiment table to be split into six beams for MOT operation. Figure 3.2b shows

this portion of the 583 nm optics.

The MOT beams are distributed by way of a homemade fiber cluster, assembled

from various off-the-shelf beamsplitters and waveplates,21 that takes one fiber input

and couples it into six fiber outputs with tunable power ratios. Each of these

fibers is sent near the MOT chamber, circularly polarized with a quarter-waveplate,

collimated with a 150 mm lens to a 28.5mm diameter, and aligned through the

chamber with 2” mirrors, as shown in figure 3.3.

3.3.3 Spectroscopy and Frequency Stabilization

For both cooling lasers we choose to frequency lock directly to an erbium reference

using spectroscopic methods. This has the obvious advantage of guaranteeing a laser

16Toptica TA-SHG Pro
17The laser is designed to output over 1 W at higher TA current.
18The result is a 1/e2-diameter of approximately 1mm, sufficiently below the AOM active aper-

ture size of 1.5× 2.5 mm.
19Gooch & Housego, AOMO 3080-125, f0 = 80 MHz, driven by VCOs and ∼ 24 dB amplifiers

(Mini-Circuits ZHL-3A-S+).
20All 583 nm fibers are from Thorlabs: PM460-HP Panda-style polarization maintaining fiber

with FC/APC end connections.
21This was designed and built from Thorlabs components by Milan Krstajic.
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frequency directly on resonance with the cooling transition, though it also typically

precludes the sort of ultra-stable (< 1 kHz) lock achievable with techniques involving

ultra-low-expansion (ULE) cavities. In comparable experiments with Er and Dy, the

narrow MOT transition is almost universally locked to a cavity, and it was unclear

a priori whether we would be able to achieve locking stability below the linewidth

of the 583 nm transition.

Due to the low vapor pressure of Er at room temperature, we are unable to

use a conventional vapor cell and instead use a see-through hollow cathode lamp

(HCL)22 as the atomic reference. The lamp consists of a sealed glass tube filled with

argon that contains a hollow cylindrical cathode, covered with Er metal, as well two

anodes, spatially separated from the cathode at either end. We apply a potential of

∼ 120 V between the cathode and one of the anodes; the positively charged anode

ionizes the background Ar gas nearby, and the ions accelerate towards the cathode,

sputtering Er atoms off the surface at impact. This produces a gas of Er atoms in

the middle of the cathode tube, from which we can obtain laser absorption signals.

We opt for a Doppler-free spectroscopy technique known as modulation trans-

fer spectroscopy (MTS) [96, 97]; its principal advantages over standard saturated

absorption spectroscopy are (1) the production of dispersive lineshapes with zero-

crossings on resonance (useful for locking) and (2) zero background offset.23 It

begins as a standard pump-probe technique, as in saturated absorption, but with

the counter-propagating pump beam phase-modulated with an electro-optic modu-

lator (EOM) at a frequency ωm of order Γ (figure 3.4). We detect the unmodulated

probe beam and demodulate the signal at ωm. Away from resonance the probe is

unaffected by the modulated pump and so there is zero demodulated signal; near

a resonance,24 however, the nonlinearity of the atomic medium induces a four-wave

mixing process in which the pump modulation is transferred (hence the name) onto

the probe [96, 97]. The result is a zero-background signal flat everywhere except

within the homogeneous linewidth of a transition, where a dispersively shaped fea-

ture with zero crossing on resonance appears.

Figure 3.5 shows a representative modulation transfer signal collected on the 401

nm transition. By locking the Ti:Sapph cavity, via a piezoelectric transducer (PZT)

22From Heraeus.
23We note that the zero background also improves upon alternative techniques with dispersive

error signals, including frequency modulation spectroscopy (FMS) and polarization spectroscopy.
Nonetheless FMS, particularly when combined with MTS as in [98], can yield better short-term
linewidth stability, while polarization spectroscopy does not require an EOM and has been suc-
cessfully demonstrated in Er [99].

24i.e. within the homogeneous linewidth of the transition
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Figure 3.4: Modulation transfer spectroscopy setup for 401 nm and 583 nm cooling
light using the same hollow cathode lamp (HCL). Here EOM stands for electro-optic
modulator, PD is photodetector, LPD is long-pass dichroic mirror (which transmits the
longer wavelength), and SPD is short-pass dichroic mirror.

on one of the cavity mirrors, to an MTS feature with a simple PI loop we are able

to achieve short-term locking stability of a few hundred kHz RMS25 and no clear

long-term drifts. Locking of the MOT laser to the much weaker 583 nm transition

was demonstrated by a Part III student this year, and self-heterodyne linewidth

measurements [101] suggested a stability well below the 190 kHz transition linewidth

[100].26 Because of an HCL supply issue, we lock both lasers to the same lamp as

shown in figure 3.4.

3.4 Zeeman Slower

We use a Zeeman slower (ZS) to cool and slow Er in one dimension, with the aim of

taking atoms leaving the Er oven with velocities around 500 m/s and decelerating

them to the MOT capture velocity of <10 m/s. The design roughly follows that of

the Innsbruck Er apparatus [41] and is further motivated by detailed discussions of

ZS design and construction in, e.g., [103–107].

25This is measured by looking at the RMS voltage fluctuations on the locked MTS signal; though
this method is susceptible to inaccuracy due to electronic noise, measurements on the 583 nm lock
using an independent method [100] suggest that this does not underestimate the laser stability.

26Measurements from the locked error signal, however, had the locked linewidth closer to 300
kHz compared with < 50 kHz via the self-heterodyne technique.

27Note that these features do not correspond to the isotopic abundances – most notably, Er-170
is in reality half as abundant as 168Er and 166Er. We attribute this in part to the more abundant
isotopes saturating at lower vapor densities than the less abundant ones and have verified that at
lower currents the amplitudes begin to reflect natural isotopic abundances. A similar observation
is discussed in [99].
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Figure 3.5: Modulation transfer spectroscopy and laser frequency stabilization for the 401
nm transition. (a) Modulation transfer signal for ∼ 1.4 mW in each counterpropagating
beam, an HCL current of 6 mA, RF frequency f0 = 25.9 MHz, and RF modulation depth
β ≈ 2 rad. The bosonic isotopes give clear, isolated features,27and the hyperfine structure
of the fermionic 167Er isotope leads to smaller features labeled with arrows above (these
all originate from F → F + 1 transitions and are discussed in [102]). (b) Free-running
and locked error signals for the 168Er MTS lock. The locked RMS linewidth is under 200
kHz for 168Er and under 100 kHz for 166Er over timescales of several seconds as measured
by fluctuations in the electronic signal.

3.4.1 Design of the Slower

Designing a ZS requires that decisions be made regarding a large number of param-

eters (some of which are interdependent), including slower type (increasing-field,

decreasing-field, spin-flip), capture velocity, deceleration parameter η, slower length,

laser detuning, etc. The first decision we made, as noted in section 2.1.1 above, was

to use a spin-flip slower because of its advantageous properties regarding laser de-

tuning and B-field behavior near the MOT.

Many of the remaining parameters can be chosen based on the desired cap-

ture velocity of the ZS. This depends on a knowledge of the axial velocity profile of

atoms exiting the oven, which is given by the speed distribution for an atomic beam,

f(v) ∝ v3 exp(−mv2/2kBT ). The peak of this distribution is at vmax =
(

3kBT
m

)1/2
,

which is around 470 m/s for a typical temperature of 1200◦C .28 If we hope to

capture all atoms up to this most probable velocity and choose a reasonable de-

celeration parameter of η = 0.5, which gives good design security without horri-

bly compromising capture velocity,29 this implies a slower length of (from equation

28Meanwhile, at T = 1100◦C , integrating the velocity distribution up to vc = 470 m/s gives
50% atom capture; at 1200◦C , 45% of atoms are captured.

29Assuming a saturation parameter s = 5 (corresponding to about 85 mW of power for a
6mm-diameter beam), δsec (equation 2.6) is Γ, allowing a reasonable amount of headroom for



CHAPTER 3. EXPERIMENTAL DESIGN AND IMPLEMENTATION 35

2.9) x0 = 4702/(2ηamax) = 40 cm. Further increasing the length of the slower

yields diminishing returns, as higher velocities become less and less probable per

the Maxwell-Boltzmannian velocity distribution. More importantly, increasing the

slower length diminishes the range of atom solid angles out of the oven which pass

through the tube without hitting the walls; this is particularly apparent in our

slower, with its differential-pumping-constrained ZS tube diameter of 8 mm.

We choose the laser detuning ∆ and bias field offset Bb primarily with the inten-

tion of limiting the magnitude of the magnetic field at either end of the slower. This

is minimized for Bb = −B0/2, which for η = 0.5 gives ∆ = −2π × 580 MHz if we

take δsec = 0 (eqn. 2.11). In practice we operate with a detuning near ∆/2π = −540

MHz. This is achievable with a double-pass AOM at 270 MHz and decreases the

field at the end of the slower as compared with the exact Bb = −B0/2 case, which

has the advantage of reducing the residual field at the MOT.

3.4.2 Physical Implementation

We use five independently controllable coils to implement the magnetic field profile

of equation 2.10 for our design values of x0 = 400 mm and ∆/2π ≈ −540 MHz

(figure 3.6). These are meant, as best as possible, to afford direct control over the

field amplitude and bias, B0 and Bb (coils 1-3), as well as to reduce the residual

field and gradient to zero at the MOT (coils 4-5). Coils 1 and 2 (the “profile”

coils) contain a variable number of windings meant to capture the square-root-like,

position-varying part of the field; coil 3 (the “bias” coil) is a solenoid that provides

constant field offsets; and coils 4-5 are rectangular with 6 × 4 and 6 × 2 windings,

respectively, placed symmetrically on opposite sides of the MOT chamber.

Coil 1 captures the negative-B section of the slower, and coil 2 captures the

positive-B section after the spin flip. Under ordinary circumstances these are run

at the same current, though it is possible to, for instance, run a lower current

through coil 2 so as to increase the final velocity of the atoms (see section A.2 of

the appendix). The coils are designed so that the maximum field amplitude is the

same at either end of the slower – this allows for lower currents to be run, but also

leads to a portion of the bias term in equation 2.10 being intrinsically built into the

profile coils.30 Accordingly, we have to first set the current through the profile coils

imperfections in the slower (see appendix A for further discussion of security detunings).
30In order for Bb and B0 to be truly independent, the profile coils would need to run from −B0

to 0, and the bias field be large and positive. This would result in the inefficient circumstance of
large positive and negative currents cancelling to produce small fields.
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Figure 3.6: Geometrical coil configuration (a) and simulated magnetic field (b) for the
Zeeman slower used in our experiment. Coils 1 and 2 are the profile coils, used to create the
negative-B and positive-B sections, respectively, of the spatially varying field component.
Coil 3 is a single-layer solenoid used to create the required bias field offset. Coils 4 and
5 are used to compensate the field and gradient to approximately zero at the location of
the MOT (black dot above); the field from coil 5 is small enough not to be visible on this
scale. The plot above is for ZS parameters η = 0.5 and ∆/2π = −540 MHz, and the small
ripples on the total field, caused by discrete jumps in winding number, are on the level of
±2 G.
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to determine η and only then adjust the bias current to match the laser detuning.

Any subsequent change to the profile currents will alter the Bb term of the field (as

well as B0), necessitating further bias current adjustments.

The physical ZS possesses cylindrical symmetry and is wound on a custom-built

vacuum part made of 316L stainless steel. It contains an inner, 8mm-diameter tube

under vacuum through which the atoms travel and whose size is constrained by the

differential-pumping requirement between the HV source chamber and UHV MOT

chamber. Surrounding this is a 20mm outer-diameter tube upon which the coils are

wound; water flows through the space between the two tubes (which is sealed off,

with 1/4” Swagelok connectors on either end) to cool the slower from the inside.31

The outside of the cooling tube is covered with Kapton tape to electrically insulate

the vacuum chamber in the event of wire insulation failure, and we machined endcaps

fitted on either end of the tube to hold the winding wires in place at the start and

end of the ZS.

We wound the ZS with 1mm-diameter enameled copper wire,32 chosen because

it is small enough to achieve the necessary spatial resolution of the magnetic field

profile without dissipating too much heat (the resistance scales inversely with the

wire’s cross-sectional area). While the nominal ZS length is x0 = 40 cm, the physical

slower spans 42 cm; the extra 2 cm at the end allow us to more closely match the

rapidly increasing field profile there. The bias coil (coil 3) consists of a single layer

(approximately 420 turns) wound directly on the cooling tube and spanning the

entire length of the slower. On top of this, we wind 12 (9) layers of wire for coil 1

(2) to achieve the spatially varying profile; for each layer, we start from the beginning

(end) of the slower and wind inwards a predetermined distance. Following [105], we

terminate each winding in the middle of the slower rather than winding a subsequent

layer back in the opposite direction; while this requires cumbersome connections

between the end of one layer and the start of the next, winding backwards leads

to messy coils because of the opposite handedness of successive layers (meanwhile,

when all windings have the same pitch, the wires in one layer nest in the inter-wire

31We choose water cooling via the tube rather than with hollow wires because such hollow magnet
wire tends to be large (∼ 4 mm diameter – or width in the case of rectangular wires), which doesn’t
allow enough spatial resolution to achieve a satisfactorily smooth profile over our (relatively) short
ZS. Admittedly, the “center of mass” of our design is at a larger radius than that of a wire-cooled
slower (in that case the water cooling is evenly distributed rather than concentrated at the center),
though this larger average radius only modestly increases the current density through (and power
consumption of) the slower.

32Coated with Polyester 200/polyamide-imide insulation for a high temperature index of 212◦C ;
this is motivated by the need to bake the chamber with the ZS already in place.
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Layer/Length (mm)
1 2 3 4 5 6 7 8 9 10 11 12

Bias 420
Profile 1 (negative) 282 257 230 200 168 134 98 61 20 20 20 20
Profile 2 (positive) 114 94 75 62 37 37 37 37 24

Table 3.1: Zeeman slower winding configuration, expressed in terms of lengths of suc-
cessive layers, measured from the start (bias and profile 1) or end (profile 2) of the slower.
Higher numbered layers are radially farther away from the center of the ZS and are shorter,
since the largest fields (and hence ‘tallest’ coils) required are at either end.

‘valleys’ from the previous layer). After each layer is wound, it is coated in a high-

temperature encapsulating resin33 and allowed to cure; this mechanically sets the

layer and fills in the gaps between wires, allowing better thermal conductivity for

cooling. The exact winding configuration was optimized with a MATLAB program

and is given in table 3.1. The coils are run with a three-channel power supply34

capable of supplying 10A and up to 32V to each coil.

3.4.3 Characterization of the Slower

The small diameter (8 mm) of the differential pumping tube at the center of the

Zeeman slower makes measuring its magnetic field impossible with readily available

equipment. Because of this (with further motivation from delays in the arrival of

the vacuum components), we decided to wind a prototype ZS coil in order to iron

out technical issues with the winding process and characterize the field produced

by our coil geometry. The prototype was formed on a 3/4-inch (19 mm) outer

diameter aluminum tube35 but otherwise possessed identical geometry to the slower

implemented on the experiment.36

Figure 3.7 shows the measured field from this prototype slower, for a bias current

of 3.26 A and profile currents of 3.20 A – these values are predicted from our coil

simulations to yield slowing parameters η = 0.5 and ∆ = 2π×−540 MHz. As shown

in 3.7a, we find that the measured profile is a good match (up to discrepancies in

33Electrolube ER2223, rated for temperatures of 180◦C long-term (and 210◦C for 30 min); we
choose this epoxy to withstand baking.

34Hameg HMP4030, with 384W maximum total power output, from Rohde & Schwarz.
35The final ZS was wound on a 20 mm OD tube; this small discrepancy was due to the discrete

sizes of stock tubing available. We find that this 1mm difference in diameter makes little difference
in the field profile; nonetheless we alter our field simulations for purposes of comparison to the
prototype.

36Up to some messiness in the wires at either end, which was remedied in the final version with
a more elegant means of fastening wires in place at the end caps.
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Figure 3.7: Measured (a) magnetic field and (b) field residuals for the prototype Zeeman
slower at currents of Ibias, meas = 3.26 A and Iprof1, meas = Iprof2, meas ≡ Iprof, meas = 3.20
A, corresponding to the currents expected to give η = 0.5 and ∆ = 2π ×−540 MHz. The
curve is the simulated field plotted for Ibias = 0.88Ibias, meas and Iprof = 0.96Iprof, meas,
suggesting that the density of windings for the bias (profile) coil is roughly 88% (96%) of
the ideal value.

the tails which we attribute to messy winding at either end) to the simulated field

for a bias (profile) current 88% (96%) of the experimental value.37 This accounts

for lower winding densities in the physical slower – apparently we were able to wind

roughly 9 turns per 10 mm, rather than the ideal 1 turn/mm. As shown in the

inset to figure 3.7b, for the middle 30 cm of the slower the field deviates by typically

under 5 G, and no more than 10 G, from the simulated value. The behavior at

the tails diverges more strongly, but here the effect is only to slightly diminish the

capture velocity (start of the slower) and increase the final velocity (end of slower –

this behavior is tolerable since we actually want finite final velocities so the atoms

can traverse the ∼ 15 cm between the ZS and MOT).

We next fit the central portion38 of the measured profile to the analytical curve

of equation 2.10 in order to extract slowing parameters (figure 3.8a). This yields

37i.e. the plotted curve is for Ibias = 0.88 · 3.26 A, and Iprof = 0.96 · 3.20 A.
38The region of positive slope.
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Figure 3.8: Extraction of predicted Zeeman slowing parameters from measured B field
data. (a) Fit to the square-root field profile of equation 2.10 revealing slowing param-
eters for this configuration of η = 0.47(1) and a -534(4) MHz laser detuning. We also
plot numerically-calculated (b) atom trajectories and (c) time-varying η values for initial
velocities ranging from 280 to 460 m/s, and for laser parameters of ∆/2π = −533 MHz,
100 mW of power, and a beam diameter converging from 8mm to 4mm at the start of the
ZS. All captured atom trajectories converge onto the same curve, explicitly demonstrating
a narrowing of the velocity distribution that leads to cooling as well as slowing, and here
we achieve final velocities of 34 m/s at the end of the slower (region II) and 6 m/s at the
MOT (end of region III).

values of η = 0.47(1) and ∆ = 2π × −534(4) MHz, both of which are reasonably

close to the nominal values of 0.5 and -540 MHz, respectively. Once again, the

discrepancies here are largely attributable to a winding density below unity.

While this fit tells us something of the steady-state behavior of the slower (in

particular, aZS = ηamax over the middle 30 cm), it does not capture the effect of

the tails and therefore tells us little of the capture velocity or final velocity.39 In

order to learn about these quantities we turn to numerical methods and solve the

one-dimensional equation of motion for an atom through the slower,40

ẍ = −ηamax = −~kΓ

2m

s(x)

1 + s(x) + 4/Γ2(∆ + kẋ− µ′B(x)/~)2
(3.1)

39η = 0.47 does suggest a capture velocity around 455 m/s (equation 2.9), but because its
extraction ignores the field at the start of the slower, it cannot imply anything precise.

40In order to do this we assume the field smoothly varies between measured data points and
craft a simple interpolation function. Though non-negligible ripples at length scales below 1 cm
are physically unlikely, they could lead to dramatically different slowing results.
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where for generality we take the saturation parameter s(x) to vary with position.

Because of a divergence of the atom beam over the length of the slower (appendix

B), we choose to focus the laser from the full ZS tube diameter of 8mm at the end of

the slower to approximately 4mm at the start – this somewhat improves the capture

velocity without contributing to atom losses.41 Accordingly, for 100 mW of laser

power, this leads to saturation parameters of s ≈ 13 at the start of the ZS and

s ≈ 3.5 by the end.42

Figures 3.8b-c show atom trajectories and instantaneous η values calculated for

various initial velocities, the above laser parameters, and a detuning of -533 MHz.

Here we label three regions, reflecting (I) atom travel before the ZS, (II) the Zeeman

slowing proper, and (III) post-slowing by off-resonant light between the ZS and the

MOT. We find a capture velocity of approximately vc = 465 m/s for this field/laser

configuration, meaning that atoms moving at below this speed in region I will be

captured (note that 540 MHz is the Doppler shift for 215 m/s atoms, which is why the

280 m/s trajectory is so significantly slowed in this region). By the end of region II

the atoms still have a velocity of 34 m/s, and the remaining slowing happens during

their long interaction time (∼ 10 ms) with off-resonant light between the ZS and

MOT. For these simulation values we find a final velocity of 6 m/s at the MOT,

which is within its capture range. The capture and final velocities can be tuned by

adjusting the laser detuning and/or bias field, adjusting the laser power and beam

divergence, and changing η by tuning the profile coils.

3.5 Magnetic Fields

The final, critical component of the experiment is the precise control of magnetic

fields used to introduce gradients and homogeneous fields at the location of the atoms

(for, e.g., trapping and the control of scattering properties) as well as to compensate

external fields which could interfere with the physical processes we hope to study.

Section 3.5.1 describes the coils used to apply field gradients and offsets at the center

41Since those atoms with radii greater than ∼ 2mm at the start of the slower will typically hit
the tube walls before reaching the MOT chamber.

42We assume a uniform beam to calculate these saturation parameters, which effectively reflect
a spatially averaged intensity value savg. In reality, for a Gaussian beam the maximum intensity
gives smax = 2savg, but it also drops to 2/e2 = 0.27 of savg at the 1/e2 waist. The Gaussian
intensity is equal to the averaged value at r = 0.59ω0 (where r is the radial position and ω0 the
1/e2 waist), suggesting that this average value actually is a decent reflection of the intensity a
‘typical’ atom would experience. Nonetheless, for a full treatment of the Gaussian profile we would
need a two-dimensional simulation.
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of the MOT chamber. Section 3.5.2 describes a large cage used for external field

compensation, and bias field introduction, at the MOT chamber as well as over the

optical transport axis between the MOT and (planned) science chamber.

3.5.1 MOT Chamber

The most obvious requirement for the MOT chamber is the introduction of a quadrupole

field, with field gradients along the vertical and radial directions, needed for the

production of the MOT itself. This is achieved with two circular coils, radius R, in

anti-Helmholtz configuration, separated by a vertical (z) distance 2D and situated

symmetrically with respect to the origin, defined as the center of the MOT (figure

3.9a). We run currents through each coil of equal magnitude and opposite direction.

For a suitable separation between the coils D =
√

3/4R,43 this produces a gradient

along the z axis dBz

dz
≈ const for z � D. In particular, for this coil arrangement

Bz(z) =
48

49

√
3

7

µ0NI

R2
z +O(z5) , (3.2)

where µ0 is the vacuum permeability, I is the current, and N is the number of turns

of wire. By ∇ ·B = 0, the gradient along the radial directions is negative with half

the magnitude, 2dBx

dx
= 2dBy

dy
= −dBz

dz
. In practice, when designing our fields we sum

the individual contributions from each turn of wire separately to account for the

non-negligible size of the wires with respect to R and D; nonetheless, equation 3.2

captures the essential behavior of the coils.

It is clearly beneficial to minimize the radius of our coils in order to achieve

large gradients with modest currents; in practice the limiting constraint is the 70

mm diameter of the vertical MOT windows. We ultimately converge on a solution

involving 6 (radial) × 4 (vertical) turns of 1.25 × 2.5 mm rectangular copper wire,

with inner radius Rin = 44 mm and minimum half-separation Din = 36.6 mm; this

yields a calculated vertical (radial) gradient of 830(−415) mG/cm
A

. More complete

properties of these and the other MOT coils are given in table 3.2. The rectangular

wire is chosen to maximize physical contact, and therefore thermal conductivity,

between adjacent windings, and the relatively large cross-sectional area is chosen to

reduce the ohmic power dissipation for a given number of windings.44 At the currents

43One can show that when R =
√

4/3D, the third-order term in a Taylor expansion of the field
vanishes, rendering it maximally linear (see, for instance, [12]). We operate in this configuration,
though it is also possible to use R = 2D, in which case the gradient is maximized.

44The dissipated power is I2R, where R here is the wire resistance, and R ∝ 1/A, where A is the
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Figure 3.9: Coil setup at the MOT chamber. (a) Schematic representation of the three
sets of coils mounted at the chamber, along with definitions of the geometrical parameters
R and D used in the text. (b) Section view of the chamber with 3D printed coil mount(s)
and coils attached.

run for MOT operation the coils dissipate under 5W of power and experience only

negligible heating.

In addition to a quadrupole field for MOT operation, we also need the ability to

implement homogeneous magnetic fields along the vertical axis. These are used (1)

to establish a quantization axis and preserve spin polarization and (2) to control the

scattering properties of the atoms. In particular, as discussed in section 2.2.1, the

competition between gravity and the scattering force in the 583 nm MOT gives us

spin polarization into the |F,mF 〉 = |6,−6〉 ground state ‘for free.’ By turning on

a small homogeneous bias field when we extinguish the quadrupole field we will be

able to preserve this polarization. The other important use for homogeneous fields is

to tune the magnitude of two-body contact interactions, characterized by the s-wave

scattering length as, through the use of Feshbach resonances [58].45 Er has a par-

ticularly dense Feshbach spectrum [41, 72] – including resonances as low as 900 mG

for 168Er and 50 mG for 166Er [71] – so precise control of magnetic fields is especially

cross-sectional area. Clearly the more important concern is to minimize I when designing coils for
low power dissipation, which can be achieved both by reducing the coil radius and by increasing
the number of windings N . Nonetheless, practical concerns (e.g. the difficulty of actually winding
the wire) and the necessity of decent tuning resolution (so that small changes in I don’t lead to
large changes in B) dictate that N not be made too large. For fixed N we therefore opt to increase
A.

45We need control over as for scientific purposes – namely to tune the relationship between the
contact and dipole-dipole interactions – but this will mostly happen in the science cell rather than
at the MOT. At the same time, however, for efficient evaporative cooling – which we might initiate
in the MOT chamber before transport – it is important to have a reasonably large scattering
length.
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Quadrupole Feshbach Low Field
Windings 6× 4 6× 2 2× 2
Rin – Rout 44mm – 52.1mm 49.3mm – 57.4mm 65.8mm – 68.5mm
Din – Dout 36.6mm – 47mm 24mm – 29.2mm 31mm – 36.2mm

Magnetic Field 833 (-416) mG/cm
A

2.03 G/A 535 mG/A
Resistance 78 mΩ 46.3 mΩ 18.4 mΩ
Inductance 150 µH 50 µH 10 µH

Table 3.2: Nominal winding dimensions and calculated properties for the various coils
mounted on the MOT chamber. The wire is 1.5×2.5mm rectangular-cross-section, enam-
eled copper wire, and we take it to have a 50 µm enamel coating on each surface for
purposes of dimensional calculations. In determining the optimal coil geometries we cal-
culated the fields from each current loop separately, without assuming a specific (anti-
)Helmholtz condition on R and D. These values were then varied in order to minimize
the (third) second derivative of the field at the MOT center; the results actually differ
somewhat from the single-winding (anti-)Helmholtz configurations presented in the text
because of the finite size (and asymmetry) of the wires.

important in this regard. While this suggests a need for high-resolution tuning, we

also might require higher fields – e.g. to access broader Feshbach resonances in Er,

or Feshbach resonances in an alkali species to be added to the experiment at a later

date46 – which runs counter to the need of high tuning resolution.47 Accordingly,

we choose to implement two sets of homogeneous coils at the MOT chamber – one

that accesses low fields under ∼ 5 G with high resolution, and another that will

achieve higher fields of at least 30-40 G (depending on the power supply) with less

resolution.

For both coils we operate in Helmholtz configuration, consisting of two circular

coils radius R running equal currents of the same sign (in contrast to anti-Helmholtz

configuration) and placed symmetrically about the origin with half-separation D =

R/2 (figure 3.9a). For this separation the second-order term vanishes and we are

left with a maximally homogeneous field

Bz(z) =
8µ0NI

5
√

5R
+O(z4) (3.3)

As with the quadrupole coils, we wind both homogeneous coils using 1.25×2.5mm

rectangular copper wire. The MOT chamber is recessed about the vertical windows,

46The lowest resonances in 39K, for instance, are at 26 and 33 G, depending on the atomic state
and desired resonance width.

47By tuning resolution, we mean the precision with which we can tune the field as limited by
current stability and tunability. For a 10G/A field it is difficult to control the field below 10 mG
as most power supplies will have current noise and tuning precision around the 1 mA level.
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allowing us to achieve a small vertical separation (and therefore larger field) for the

higher-field Feshbach coils (consisting of 6 × 2 windings) of Din = 24 mm. The

inner radius of this set of coils is Rin = 49.3 mm, and the calculated field produced

is slightly above 2 G/A. The low-field coils, meanwhile, consist of 4 windings of

rectangular copper wire and produce approximately 530 mG/A. See table 3.2 for

details on the coil properties.

We operate all three coils at present with 10A power supplies,48 which caps their

fields at 8.3 G/cm, 20.2 G, and 5.3 G, respectively. These values should be sufficient

for the quadrupole and low-field coils, though we will most likely in the future require

more current through the higher-field Feshbach coils.

All three are mounted on the MOT chamber using a custom-designed, 3D printed

support that enforces the inner coil dimensions given above (figure 3.9b). The

material is an ABS-like plastic with low thermal conductivity, presenting problems

for coil cooling in principle, though we introduce holes in the mount – ostensibly

for the purpose of diminishing warping of the 3D printed part – that also seem to

improve heat dissipation. While switching to a metal mount would improve thermal

dissipation further still, the major advantage of plastic is the elimination of unwanted

eddy currents. Pockets for the quadrupole and Feshbach coils in the mount allow

room for water cooling tubes should that later prove necessary.

3.5.2 Compensation Cage

Due to its highly magnetic nature49 as well as its unusually dense Feshbach spectrum,

compensation of stray magnetic fields is particularly important for erbium. While

we leave magnetic compensation at the science chamber to the future,50 during this

work we have designed and built51 a large cage for three-axis compensation both

at the MOT chamber and over the optical transport axis between the MOT and

science chambers. It consists of three pairs of rectangular coils in maximally-uniform

Helmholtz configuration52 about the MOT center, with half-separations Dx,y,z and

side lengths ax,y,z and bx,y,z. A third coil exists a further distance 2Dy along the

48Delta Elektronika, ES 015-10.
49Erbium’s mJ = −6 ground state means a magnetic force roughly 6 times stronger than for

many alkalis with mF = ±1.
50Because compensation will be most important in the science cell, we plan to use smaller coils

with a better response frequency than the cage, with its high inductances.
51While I designed the cage, it was built primarily by Milan Krstajic. I contributed some to the

wire winding (which, it turns out, was a much more tedious process than expected).
52Which for square coils exists at a half-separation D ≈ 0.54a, where a is the side length. Note

that our coils are rectangular and so this relationship differs somewhat.
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Figure 3.10: Cage used for compensation of external fields at the MOT and over the op-
tical transport axis, as well as for the application of bias fields to preserve spin polarization
during transport.

transport (y) axis towards the science cell for use during optical transport. Figure

3.10 shows the cage geometry. We use equations for the field from rectangular coils

given in [108] to numerically optimize coil positions for maximal uniformity at the

MOT center.

The cage is approximately 1000mm long along the transport axis and 550mm in

width and height, centered at the MOT chamber. This means that it comfortably

covers the entire transport axis between the MOT chamber and science cell ∼ 35

cm away. Each coil consists of 24 windings of 1mm-diameter enameled copper wire,

mounted in a structure made of aluminum U-shaped channeling 10mm wide× 15mm

high. All coils are wound in two sets of 12 windings, each of which generates half

the full field. This allows us, if necessary, to wire them separately and produce both

positive and negative fields without need for an expensive bipolar power supply.

Specific properties of the coils are given in table 3.3.

During MOT operation we run equal currents through each symmetric pair of

coils to achieve homogeneous fields with magnitudes given in table 3.3. During

transport, which breaks the symmetry of the cage, such uniform fields are impossible

to maintain and instead we aim simply to minimize spatial variations and higher-

order terms (gradients and harmonic potentials).

Along the y axis, by adding a third coil (y3) we are able to produce a maximally
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x y z
Windings 4× 6 6× 4 6× 4

Center Dim. a× b 977mm × 482mm 540mm(x) × 515mm(z) 560mm × 1010mm
Center Sep. 2D 288mm 286mm 336mm

Field at MOT 664 mG/A 744 mG/A 583 mG/A
Resistance 3.3 Ω 2.4 Ω 3.6 Ω
Inductance 3.5 mH 2.3 mH 3.8 mH

Table 3.3: Dimensional, magnetic, and electrical properties of the compensation cage.
Winding numbers are given as (radial) × (axial), and dimensions reflect the center of the
wire bundle (i.e. winding “3.5 × 2.5”). The messy-looking dimensions are chosen because
they correspond to clean dimensions for the support structure (x-coil channels 970mm and
475mm long, for instance).

homogeneous field during transport by running equal currents Iy1 = Iy3 through the

extremal coils and a smaller current Iy2 = 0.53Iy1 through the middle coil (figure

3.11b). This leads to a field at the midpoint of the transport axis of 648 mG/A, and

the field varies by a tolerable 3.7% between the midpoint and the science cell.

Figure 3.11a, meanwhile, shows that the bias field Bz increases on-axis towards

the science cell and varies by at most 4.3% during transport. Again, this varia-

tion is reasonable, particularly if we choose to sit at a field far from any Feshbach

resonances, and should allow for the preservation of spin polarization by virtue of

always being larger than residual x and y fields (which we can use the x and y coils

to compensate).

We further consider field inhomogeneities that could lead to trap instability

during transport. The most notable of these is a quadratic term in Bz along z

(i.e. d2Bz/dz
2 = B′′z ) which continually increases along the transport axis (figure

3.11c). Because the field increases off axis this leads to an anti-confining potential

for our high-field seeking atoms (mJ = −6). The anti-trapping frequency can be

calculated from

Uharm(z) = µBgJmJB
′′
z z

2 =
1

2
mω2z2 =⇒ ω =

√
2µBgJmJB′′z

m
(3.4)

and, as seen in figure 3.11c for a nominal bias field of 1.5 G, rises to a maximum

value of i× 0.15 Hz at the science cell. This is negligible compared to the expected

radial ODT trapping frequencies of order 1 kHz [91].53

53Of course, the axial trapping frequency is closer to 20 Hz, so inhomogeneities along the y axis
are more significant. Nonetheless, we find that the linear and quadratic terms here (i.e. dBz/dy
and d2Bz/dy

2) lead, respectively, to displacements of the trap center of under 1 µm (c.f. the
Rayleigh range of order 1 mm) and to trapping frequencies of order 0.1 Hz (as above, though
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Figure 3.11: Magnetic field behavior of the compensation cage over the MOT-science
cell transport axis. (a) The bias field Bz, here plotted for Iz1 = Iz2 = 2.57A corresponding
to 1.5 G, varies by 4.3% over the full transport axis, which should allow for reasonable
adiabatic transport to maintain spin polarization. We choose 1.5 G because it sits far
away from Feshbach resonances for both 166Er and 168Er (see [41, 72]). (b) By adding
a third y coil we produce a reasonably homogeneous field By along the transport axis,
here shown for currents Iy1 = Iy3 = 1A and Iy2 = 0.53Iy1 , that varies by at most 3.7%.
Without the extra coil the field would drop towards zero away from the MOT. (c) Vertical
anti-trapping frequencies, caused by nonzero quadratic terms d2Bz/dz

2 in the bias field,
as a function of distance along the transport axis. Insets are cuts of the field along the z
axis at y = 0 and y = 20 cm, demonstrating the appearance of inhomogeneities.
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We finally note that we have purchased a sensitive magnetometer54 which will

eventually be used for active compensation of external fields in the experiment.

The large inductances of the compensation cage mean that active compensation can

only be achieved for DC and time-varying fields slower than a few kHz, though with

smaller coils at the science cell we will not have this limitation.

here at times the potential is confining rather than anti-confining). We have similarly confirmed
that other diagonal and off-diagonal, 1st- and 2nd-order terms are negligible compared with the
expected ODT potential.

54Honeywell HMC2003 three-axis magnetometer, ±2 G range and 40 µG resolution.



Chapter 4

Ongoing and Future Work

Though an overwhelming majority of the work encompassing this thesis involved the

experimental design and construction detailed in the previous chapter, we have very

recently begun the transition towards system switch-on and characterization. The

first significant milestone in this process was the detection of an erbium beam in our

vacuum chamber, discussed in section 4.1. This represents a necessary and important

starting point from which to begin optimizing the laser cooling and searching for a

MOT. Section 4.2 looks ahead and discusses two scientific projects upon which we

hope to embark after achieving a fully functional apparatus. In section 4.3 we offer

final remarks and conclude the thesis.

4.1 Initial Observation of the Erbium Beam

For initial work with the erbium atomic beam,1 we decided to postpone vacuum

chamber bakeout and use only a turbo pump2 backed by a scroll pump,3 which

together allow us to maintain pressures between 10−6 and 10−7 mbar in the HV

section without turning on the ion pumps.4 After pumping down, we began by

heating up the erbium oven to a temperature of 1100◦C in the main effusion cell

and 1200◦C in the separately controllable ‘hot lip’ section. The effusion cell holds

1The experimental work in this section was conducted jointly by myself, Milan Krstajic, and
Rob Smith.

2Leybold Oerlikon Turbovac TW70H.
3Leybold Oerlikon Scrollvac SC 5D.
4Turning on the ion pumps could reduce their lifetime, and atomic beam work does not require

pressures lower than those achievable without them. The system will be baked, the ion pumps
turned on, and the NEG elements activated, after the science cell is added to the system in fall
2018, at which point the pressures should be reduced to ∼ 10−9 mbar in the HV section and
∼ 10−11 mbar in the UHV section.

50
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the Er source metal and is responsible for producing a significant vapor pressure,

while the hot lip contains apertures which help to collimate the beam.5 A slightly

larger aperture, made from a custom copper gasket, is placed downstream from

the oven and prevents those atoms which would not reach the MOT anyway from

passing through TC and eating up laser power [92].

For initial study of the atomic beam, we passed a collimated, 5mm-diameter

beam of 401 nm light vertically downwards through the characterization windows

just after the TC cube. By collecting the atomic beam fluorescence (which is faintly

visible by eye with ∼ 10 mW of laser power) with a 25mm lens and a photodiode

through another viewport at 90◦ to the pumping beam, we observed well-resolved

peaks corresponding to the relatively abundant 166Er, 168Er, and 170Er isotopes, as

well as a noticeable 164Er peak and one or two 167Er hyperfine transitions (figure

4.1).6 Fitting Lorentzian lineshapes to these peaks yields widths of roughly 60

MHz,7 which is significantly larger than the expected power-broadened linewidth of

∼ 40 MHz.8 Unsurprisingly, this suggests that there is a non-negligible transverse

velocity spread associated with our mechanically collimated – but not yet laser

cooled – erbium beam, leading to a finite Doppler width.

To characterize this effect, we fit the observed spectrum9 to a sum of Voigt profiles

(figure 4.1a) in an effort to extract the Doppler width, which in this case is on the

order of the homogeneous broadening. Because these widths are of the same order,

even small imperfections in the signal – including unresolved hyperfine peaks or slight

asymmetries due to misalignment through the chamber – can dramatically affect the

extracted parameters. Indeed, while the individual width parameter errors are on

the order of 1 MHz for each of the three most prominent peaks,10 the scatter between

the three is much larger. Taking a conservative approach to error estimation, by

accounting for this scatter we arrive at values of Γ = 36(9) MHz for the homogeneous

linewidth and σ = 23(3) MHz for the Gaussian width. The former is consistent with

an expected power broadening of ∼ 40 MHz.

We can use the fitted Doppler width to estimate the transverse temperature in

our beam. In particular, comparing the standard Gaussian function f ∝ exp[−(ω−
5The higher temperature helps, in part, to prevent these apertures from clogging.
6The most prominent of these hyperfine peaks (we include it in the fit in figure 4.1a) corresponds

to the F = 19/2→ F ′ = 21/2 transition [102].
7We calibrate the frequency axis using published isotope shift values from [102].
8This corresponds to a 5mm-diameter beam with about 10 mW of power.
9Or really the average of 16 such spectra.

10It is harder to trust the values for the 164Er and hyperfine peaks, so we exclude them in this
analysis.
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Figure 4.1: Erbium atomic beam fluorescence spectrum at 401 nm. (a) Fit of the
normalized signal to a sum of five Voigt profiles, corresponding to the four most abun-
dant bosonic isotopes as well as the most prominent 167Er hyperfine transition. Another
feature due to the fermionic isotope is visible between the 168Er and 166Er peaks, and
an unresolved shoulder on the right side of the 168Er line, corresponding to yet another
hyperfine transition, can be seen with the right amount of squinting. The relative peak
heights observed here agree to within 1% with the expected isotopic abundances in table
1.2. (b) Fits to the 170Er peak with both a Voigt profile and a Lorentzian. The Voigt
profile captures the tails of the fluorescence feature much better than its purely Lorentzian
counterpart.

ω0)2/(2σ2)] with the Doppler broadening lineshape [42],

fDopp(ω) =
c

uω0

√
π

exp

[
− c

2

u2

(
ω − ω0

ω0

)2
]

, (4.1)

where u =
√

2kBT/m is the most probable velocity, we find that the temperature

is given by

T =

(
σc

ω0

)2
m

kB
=
(σ
k

)2 m

kB
(4.2)

This gives a measured transverse atomic beam temperature of T = 1.7(5) K, which

is 3 orders of magnitude higher than the Doppler limit. This corresponds to a

most probable velocity u = 13 m/s and implies, for 500 m/s longitudinal atoms,

a reasonable-sounding 1.5◦ beam divergence angle. With a decently well optimized

transverse cooling stage we should be able to cut the divergence by roughly a factor of

two and bring the transverse temperature down to around 400 mK prior to Zeeman

slowing (see appendix B).11

11The expected 5.5 m/s most-probable cooled velocity given here is in rough, but not precise,
agreement with the number expected from a detailed numerical simulation of the atomic beam
cooling process implemented by another student, Milan Krstajic [92]. The cooled transverse ve-
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4.2 Future Scientific Projects

Even in the early stages of an experiment when day-to-day work requires immer-

sion in technical minutiae and engineering details, it is exciting and worthwhile to

consider proposed avenues of research suitable to the apparatus. Below we consider

two such possibilities.

Roton Physics in Dipolar Condensates

First proposed by Landau in the 1940s [109], the concept of the roton relates to

a peculiar feature predicted, and later observed [110], of the energy-vs.-momentum

dispersion relation ω(k) for superfluid 4He. The characteristic excitation spectrum

begins with a linear dispersion relation at low k, characteristic of collective phonon

modes, or sound waves. The spectrum then reaches a local maximum (these exci-

tations are sometimes referred to as maxons) and decreases into a quadratic energy

well, characterized by a minimum wavenumber krot and energy gap ∆. These ex-

citations were dubbed rotons by Landau.12 For higher momenta still the spectrum

becomes quadratic in k, characteristic of free particle excitations (figure 4.2a).

Though the microscopic interpretation of these rotons is still not agreed upon in

the context of superfluid helium, one possible picture arises in light of Feynman’s

relation [111],

ω(k) =
~k2

2m

1

S(k)
, (4.3)

where m is the atom mass and S(k) is the static structure factor, which can be

thought of as quantifying the structured-ness or crystallinity of the system for ex-

citations of momentum ~k. In this picture, the roton minimum arises due to a

maximum in the structure factor, suggesting that roton excitations have something

to do with the particles’ tendency to locally organize or “stay apart” (Feynman’s

words) [111] – this could also suggest that rotonization hints towards solidification

or even supersolidity.13

More recently, it was shown that dipolar Bose-Einstein condensates (dBEC) are

locity distribution in that case is peaked with a width of about 1 m/s but has long tails giving
RMS velocities between 3 and 5 m/s. This is due to a coupling between axial velocity and radial
cooling efficiency, whereby faster atoms have less interaction time with the TC beams and remain
hot, hence the wide tails. 500 m/s atoms presumably already fall within the widened region of this
distribution, which could be one reason our simplistic model slightly overestimates the result from
the detailed numerical one.

12This may have been a misnomer, as it is not clear that these excitations are in any way
rotational in nature.

13Though the latter connection is now generally accepted to be incorrect [59].
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Figure 4.2: Roton mode in dipolar condensates (dBEC). (a) Dispersion relation, normal-
ized to the vertical trapping frequency ωz and harmonic oscillator length lz, of a 2D dBEC
for fixed dipolar length and variable s-wave scattering length, calculated from equations
in [59, 112]. For add ≤ as (top curve), the dispersion relation exhibits only phonon-like
(low k) and particle-like (high k) excitations. For lower as, the roton minimum appears
at momentum krot and energy ∆, and for large-enough εdd an instability occurs (bottom
curve). (b) ‘Pancake’ trapping geometry for observation of roton physics in dBEC (figure
from [113]).

expected to exhibit a roton-maxon spectrum similar to that found in superfluid

helium [114]. This occurs in 2D polarized gases of erbium atoms, confined in a

uniform in-plane potential14 and a tightly-confining vertical (z) harmonic potential15

and polarized out of the plane via a magnetic bias field (figure 4.2b). For low-k

excitations the side-by-side orientation of the atoms leads to a repulsive potential,

and these excitations exhibit a linear, phonon-like dispersion relation. For higher k

and sufficiently large dipolar interactions (εdd > 1), however, the excitations begin

to become 3D in nature, insofar as the dipoles are pushed out of the plane, and

the attractive character of the ‘head-to-tail’ portion of the dipole-dipole potential

becomes apparent. This leads to a roton minimum, the strength of which depends

on the s-wave scattering length (figure 4.2a). High-k excitations are once again

particle-like.

For small enough contact interactions and/or large enough particle densities, the

roton minimum turns into a roton instability, wherein the excitation frequencies

become imaginary for certain values of k and are no longer stable (lowest curve in

figure 4.2a). This phenomenon was recently observed in a 1D gas of Er [79]. As

one of the first projects on the new experiment, we hope to go one step further and

map out the roton-maxon dispersion relation using Bragg spectroscopy, a coherent

14Perhaps enforced by the projection of a cylindrical, blue-detuned beam for radial confinement
in the dark central region.

15Imposed with a red-detuned sheet beam.
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process through which one can measure the excitation energy for a given wavenumber

k [115–117]. Doing so could further lead to studies of the superfluid critical velocity

and the Landau criterion [114].

Supersolidity in Lattices with Long-Range Interaction

A supersolid is a counterintuitive quantum phase which simultaneously exhibits

characteristics of a superfluid (evidenced by frictionless flow or particle delocaliza-

tion16) and a solid (evidenced by spatial order or a broken translational symmetry17)

[118]. To date it has not been unequivocally demonstrated, though recent results

in cavity-based and spin-orbit coupled cold-atom systems claim to have done so

[119, 120]. In dipolar quantum gases, the phenomenon of quantum droplet forma-

tion has been linked to supersolidity, and active research is being pursued down that

avenue [121].18

Another approach is to use optical lattices of dipolar atoms as a starting point.

Perhaps the most promising strategy, considering experimental temperature limita-

tions, is to work with large numbers of atoms per site [122]. As a potential project

for the erbium experiment, we propose to project a 1D lattice onto the 2D pancake

geometry described above in search of such a supersolid phase, which should appear

at temperatures around 100 nK with roughly 200 atoms per lattice site.

4.3 Conclusion

The work undertaken over the course of this thesis has laid the foundation19 for

what looks to be a productive dipolar BEC experiment. The starting point was

a nearly empty lab with one operational cooling laser, and at the time of writing

the apparatus is near-fully assembled with all physical components necessary for a

narrow-line MOT in place (figures 4.3 - 4.4). In particular, the present author has

designed and set up a majority of the cooling optics; designed, wound, and tested

the Zeeman slower20; designed and built the magnetic field coils for the MOT cham-

ber (including a compensation cage and various gradient and bias coils); and more

16Formally off-diagonal long-range order (ODLRO).
17Formally long-range order (LRO).
18The roton minimum also intuitively seems to lead to a breaking of translational symmetry

through the introduction of a length scale associated with krot, though resulting phases are likely
unstable, meaning that quantum droplets represent a more plausible approach towards continuous-
symmetry-breaking supersolidity in dBECs [121].

19In collaboration with a PhD student [92] and (for a few months) two Part III students.
20Or really two such slowers.
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Figure 4.3: Laser table on October 10, 2017 (left) and July 13, 2018 (right).

generally contributed to many aspects of the project at a broad level, including, no-

tably, the specification and purchasing of the experiment’s computer control system

(not discussed in this thesis but briefly described in [92]).

The experiment has been set up on breadboards to facilitate a move, in early

August 2018, to its new home at the University of Oxford. The science cell and ODT

laser will arrive there early in the fall, and after installation of the cell, followed by

chamber bakeout, it should be possible to push for BEC before the end of 2018.

We already own the ∼ 372 nm laser that will be used to implement a repulsive box

potential following the attainment of BEC.

First projects with the newly completed experiment will involve studies of ro-

ton physics, and then supersolidity, through the implementation of a uniform 2D

‘pancake’ trap followed by the introduction of a 1D lattice. More generally, the

experiment will have the versatility to explore a variety of phenomena, including

the effect of dipolar interactions on various quenched and driven behavior already

observed in uniform alkali systems [51, 123]. If two of the more significant recent

trends in ultracold-atom-based many-body physics have been the switch from har-

monic to uniform potentials and the introduction of dipolar interactions, then our

combination of both should represent an ideal platform from which to launch a novel

series of quantum gas experiments.



CHAPTER 4. ONGOING AND FUTURE WORK 57

Figure 4.4: Experiment table as of July 13, 2018.



Appendix A

Extended Laser Cooling Theory

In this appendix we discuss in more detail the theories of Zeeman slowing and

narrow-line trapping presented in sections 2.1.1 and 2.2.1, respectively, of this the-

sis. Beginning with ZS, though the equations presented in 2.1.1 are correct for a

perfect slower, they fail to accurately capture the variety of behavior that will hap-

pen if, among other things, the magnetic bias field or the laser power differs even

slightly from its design value. In such circumstances, an atom’s motion through the

slower is no longer accurately described by constant-acceleration kinematics, and

we must consider the differential nature of the slowing equations. We turn our at-

tention to this problem in section A.1, while in section A.2 we consider the means

through which one can achieve a nonzero final velocity (desirable because the atoms

have to travel a finite distance before reaching the MOT) by tuning various slower

parameters. In section A.3, meanwhile, we turn our attention to a simple discussion

of the mechanisms underlying the capture behavior of the narrow-line MOT.

A.1 Zeeman Slowing Out of Equilibrium

In order to develop a more intuitive picture of the Zeeman slower, it is helpful

to visualize the relationship between the location of the atom and of the peak of

the scattering curve, Fscatt(δ) (equation 2.1), in position and velocity space. In

particular, the maximum value of the scattering force is always found when the

total detuning vanishes,

δ(x, v) = ∆ + kv − µ′

~
B(x) = 0 . (A.1)

58
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For a maximally efficient slower, in which the deceleration is as large as possible (i.e.

a = amax = ~kΓ/2m), δ(x, v) = 0 always and the deceleration parameter η is given

by ηmax = s
1+s

, where s is the laser saturation parameter. In the intuitive picture,

the atom sits at the very top of the scattering curve as the atom and peak move

simultaneously from 0 to x0 in position space, and from vc down to 0 in velocity space

(figure A.1(a)). While this allows us always to take advantage of maximal scattering,

the obvious difficulty is in its stability: for any small fluctuation in the magnetic field

or laser intensity (or even atom velocity due to quantum fluctuations in the scattering

of photons), the atom necessarily drops off the peak of the scattering curve. While

the curve continues to move at the same pace, the atom now experiences a decreased

scattering force and is unable to keep up with the ideal trajectory – this problem

compounds upon itself as the atom drifts farther away from the scattering resonance,

and the result is a critically unstable trajectory.

Now, suppose we decrease the security parameter1 below its optimal value, so

that η = s
1+s

< ηmax = s′

1+s′
, where s′ is the real laser saturation parameter and s < s′

is the ‘effective’ saturation parameter corresponding to our choice of η.2 Because

the acceleration is now lower than that allowed by the laser radiation, there must be

some finite total detuning that decreases η below ηmax; in the intuitive picture, the

atom drops off the peak of the scattering curve and ‘surfs’ along its side, following

it at (to a decent approximation for the majority of the slowing) a near-constant

offset related to3 δ (figure A.1(b)). This improves the stability of the system in

that any perturbation which causes the atom to slow less than it should moves it

closer to resonance, at which point the scattering force increases and corrects for

the temporary perturbation.

The simplest way to implement this ‘security detuning’ is to adjust the magnetic

bias field, Bb, as was done in section 2.1.1 by including a term proportional to the

required total detuning,

δsec = −Γ

2

√
s′

η
− s′ − 1 = −Γ

2

(
s′ − s
s

)1/2

(A.2)

1We use the term ‘deceleration parameter’ and ‘security parameter’ interchangeably for η, which
takes on both names in the literature. Decreasing η is accomplished by decreasing the magnitude
of B0 (equation 2.10) on the physical apparatus.

2Here we follow the notational convention of [104]. An alternative way of thinking about this
situation is that we begin with a maximally efficient slower of η = ηmax, then increase the saturation
parameter from s to s′ while leaving everything else unchanged.

3In fact, the offset in velocity space is equal to δ/k. In position space, the offset actually varies
and is determined by the slope of the magnetic field, which maps frequency detuning onto position.
Nonetheless, we call this offset near-constant in that the vertical displacement remains unchanged.
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Figure A.1: Numerically calculated atom and scattering curve locations in position and
velocity space at several times during Zeeman slowing for (a) slowing at η = ηmax and
ideal B field (i.e. the analytic expression of equation 2.10), (b) slowing at η < ηmax and
analytic B field with δb 6= δsec, and (c) slowing with the magnetic field simulated for our
actual slower. Arrows indicate the motion of the atom and scattering peak in time, and
dashed lines indicate δsec, the design detuning corresponding to the chosen η value. For
typical non-equilibrium slowing the detuning begins small (the atom is close to resonance)
and eventually increases beyond δsec at the end, though for the majority of slowing it
is nearly equal to δsec, thus justifying the ‘surfing approximation’ we make in the text.
Note that for the real Zeeman slower, the atom actually begins on the wrong side of the
scattering peak (lower right). The stability condition for the slower is that the atom not
progress beyond δ = +δsec – i.e. the dashed line on the ‘wrong’ side of the scattering peak
(see [104] for a more detailed treatment of this condition). Because this is not the case,
the atom is still captured.



APPENDIX A. EXTENDED LASER COOLING THEORY 61

In this case, δ = δsec is exactly constant over the length of the slower and the velocity

is equal to its design value of v(x) = vc
√

1− x/x0.

If we even slightly vary Bb, ∆, or s′ from the values assumed for this optimal

configuration, though, the total detuning is no longer constant, and the velocity

becomes offset from its design value in an effort to compensate for the discrepancy

between δsec and the actual detuning. Below, we present an analytical treatment of

this scenario, following [104] but with our own modifications to make the treatment

more general.

To begin, let us write the velocity of the atom as

v′(x) = v(x)− ε(x) ,

where v′(x) is the actual atomic velocity, v(x) is the ideal square-root-like design

velocity, and ε(x) denotes the (position-dependent) velocity offset. The sign is chosen

because the velocity is typically less than its design value to enforce a stable detuning

δ < 0.4 Furthermore, we introduce an arbitrary ‘bias offset’ between the magnetic

bias field and laser detuning,

δb = ∆− µ′

~
Bb (A.3)

We note that δb = δsec satisfies the steady-state scenario presented in section 2.1.1

and mentioned above, wherein ε(x) = 0.

To solve for the the velocity offset we begin, as always, with the scattering force

equation, which gives an atomic acceleration

dv′

dt
= − s′

1 + s′ + 4
Γ2 (δb − kε)2amax . (A.4)

We now make the ‘surfing approximation’: the atom ‘surfs’ along the side of the

scattering curve at a nearly constant offset,5 and so mathematically, dε
dx
� dv′

dx
and

4This is apparent from the detuning equation (eqn. 2.7, or A.1). Another way to see this: if the
atom begins exactly on the scattering peak and s′ > s, the increased scattering force immediately
slows the atom below its design velocity.

5Equivalently, the slope of the actual trajectory is nearly the same as that of the design trajec-
tory.
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dv
dx
≈ dv′

dx
. Equation A.4 then becomes

dv′

dt
= v′

dv′

dx
≈ v′

v

(
v
dv

dx

)
= − s′

1 + s′ + 4
Γ2 (δb − kε)2amax

=⇒
(

v′

v′ + ε

)(
s

1 + s

)
=

s′

1 + s′ + 4
Γ2 (δb − kε)2 (A.5)

where in the second line we have used the fact that v dv
dx

= dv
dt

= −ηamax.

This is a quadratic equation for ε(x); after a bit of algebra, we find

ε(x) = θ ±
(
θ2 + φ2

)1/2
(A.6)

where

θ =
Γ2

8k2

s′(1 + s)

sv′
+
δb
k

(A.7)

and

φ =

[
Γ2

4k2

(
s′ − s
s

)
−
(
δb
k

)2
]1/2

(A.8)

From this we immediately get the result we saw previously: namely, for δb = δsec,

φ = 0 and thus ε = 0. We further note that for large velocities v′ � Γ/k, θ ∼ const

and therefore6

kε = const = δb +
Γ

2

(
s′ − s
s

) 1
2

= δb − δsec (A.9)

This gives the constant velocity offset observed for the majority of slowing. Once

again, it is equal to zero for the equilibrium case δb = δsec, and it only fails to capture

the atom’s behavior near the end of the slower when kv′ becomes comparable to the

width of the cooling transition. More generally, as can be seen in figure A.1, the

surfing condition fails near the end of the ZS because the detuning moves rapidly

from its equilibrium value, at which point the above result diverges from numerically

calculated velocity profiles (see [104]).

A.2 Zeeman Slowing to Nonzero Final Velocity

When we consider Zeeman slowing in theory (section 2.1.1), we construct a magnetic

field profile by assuming that the atom is ultimately slowed to zero velocity. While

for the narrow-line, low-capture velocity MOT in our experiment such behavior

6Here we choose the sign that leads to stable trajectories.
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would appear ideal, atoms that are brought to near-zero velocity at the end of the

slower will in fact never have the opportunity to interact with the MOT. Indeed,

over the ∼ 15cm between the end of the slower and the center of the MOT chamber,

atoms slowly scatter photons detuned some 540 MHz from the 401-nm transition.

While this detuning is such that

ascatt

amax

≈ 0.4% ,

the magnitude of the acceleration is still ascatt ∼ 2000 m/s. This means that an

atom must have a velocity above roughly 25 m/s at the end of the Zeeman slower

to successfully traverse 15 cm of off-resonant scattering and arrive at the MOT with

zero velocity. Below, we develop two approaches towards achieving this goal. The

first is to modify the magnetic field profile B(x); the second relies on tuning the

constant bias field Bb and the laser detuning δω with respect to one another.

A.2.1 Altered Magnetic Field Profile

Given a desired final velocity vf and constant deceleration aZS (as before), solving

for the atomic velocity as a function of position x along the slower (length x0) follows

from simple kinematics. The result is

v(x) = v0

√
1 +

(
vf
v0

)2

− x

x0

≡ vc

√
1− x

xeff

, (A.10)

where v0 =
√

2aZSx0 is the capture velocity of a slower designed to bring atoms to

rest. In the second equality we have defined the capture velocity in this finite-slowing

case,

vc = v0

√
1 +

(
vf
v0

)2

,

as well as the ‘effective slower length’

xeff = x0

(
1 +

v2
f

v2
0

)
= x0

(
vc
v0

)2

.

The velocity profile thus behaves like that of a slower of length xeff that abruptly

turns off at x = x0 < xeff.

Using equation 2.7 we can then solve for the magnetic field, which takes the same
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form as in the case of slowing to rest:

B(x) = Bb +B0

√
1− x

xeff

, 0 ≤ x ≤ x0 , (A.11)

with

Bb =
~
µ′

(∆− δsec) and B0 =
~k
µ′
vc

as before, but with vc redefined above.

This approach is conceptually clean, but it requires that we build in a specific

final velocity to our slower when constructing its field profile.7 Because of the

necessity of atomic-flux optimization after the physical construction of the slower,

below we consider the effect of changing bias fields and laser detunings on the final

velocity.

A.2.2 Bias Field and Laser Frequency Tuning

In principle, if we adjust the magnetic bias field Bb and laser detuning δω such that

Bb =
~
µ′

(∆− δsec + ∆δ) ,

the resonance condition (eqn. 2.7) reads:

∆ + kv(x)− µ′

~
B(x) = δ(η)

=⇒ ∆ + kv(x)− (∆− δsec + ∆δ)− kvc
√

1− x

x0

= δsec

=⇒ v(x) =
∆δ

k
+ vc

√
1− x

x0

≡ ∆v + vc

√
1− x

x0

. (A.12)

This seems to imply that the velocity at the end of the slower is v(x = x0) = ∆v,

and so simply adjusting the relationship between the laser detuning and the bias

field allows one to choose a final velocity.

Unfortunately, equation A.12 for v(x) no longer describes motion under constant

acceleration, and so the total detuning varies as a function of x. Nonetheless, the

principle still holds, and as long as Bb 6= ~
µ′

(∆− δsec) at a given position x, there will

be a velocity offset (which also varies as a function of x) from the ideal square-root

7Admittedly, in practice the discrepancy between this profile and that of the slowing-to-rest
case is negligible. When vf = 25 m/s and η = 0.5 (corresponding to v0 = 470 m/s), xeff = 40.1 cm
for a 40-cm slower.
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Figure A.2: Numerically calculated ZS final velocities as a function of the detuning
offset, ∆δ.

profile. Figure A.2 shows the numerically calculated final velocities corresponding

to small frequency offsets ∆δ and slowing parameters of η = 0.5, s′ = 5, ∆ = −540

MHz and an ideal magnetic field profile. The final velocity increases for detunings

on either side of the optimal value, if not quite symmetrically.

A.3 Narrow-Line MOT Behavior

Here we briefly present a simple model we developed to help explain some of the

capture phenomena observed in numerical simulations of the narrow-line MOT be-

havior from section 2.2.1. Here we only concern ourselves with the atom’s behavior

between initial capture and its initial achievement of vx = 0 (i.e. where it first turns

around), during which time it interacts almost exclusively with the laser in the −x
direction, opposing its motion (initially in the +x direction). The total detuning

with respect to this beam is given by

∆ + kvx + |µ′| dB
dx

x = δ (A.13)

where here dB
dx

is positive given the negative vertical gradient in our MOT. Because

of the small linewidth of the transition, δ must be small for any appreciable slowing

to occur, and approximating δ ≈ const. ≈ 0, we see that

dv

dx
= −|µ

′|
k

dB

dx
= const, (A.14)
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i.e. the slowing follows a linear trajectory imposed by the B gradient in order to keep

the detuning small. As with the Zeeman slower, this trajectory is stable for negative

δ insofar as perturbations in which vx temporarily becomes larger than expected

are greeted with smaller δ and faster slowing. The linear-trajectory approximation,

which we will take for the remainder of this appendix, appears good when compared

with the numerically calculated results in figure 2.5a.

Atoms are captured by the MOT when they are slowed to zero velocity before

‘running out of real estate’ by moving beyond the spatial extent of the MOT beams.

Accordingly, dv
dx

has to be large enough to reach vx = 0 before this happens. In

particular, the maximum allowed value of this derivative is∣∣∣∣dvdx
∣∣∣∣ ≥ ∆v

∆xmax

=
v0

l/2− x0

(A.15)

where v0 is the initial velocity, l/2 is half the atom’s interaction length with the

MOT beams, and x0 is the position at which the linear slowing trajectory vx(x) is

equal to v0, taken to be the position at which the atom starts slowing (i.e. it initially

follows v(x) = v0 for x < x0 and then v(x) = v0 − dv
dx

(x − x0) at later positions).

This is defined by the position at which δ = 0, given by

x0 = − (∆ + kv0)

|µ′| dB/dx
(A.16)

Substituting equation A.14 for dv/dx and the above for x0, eqn. A.15 becomes

dB

dx
≥ 2 |∆|
|µ′| l

(A.17)

which is eqn. 2.26 in the main text. We find decent quantitative agreement between

this equation and the gradient cutoffs observed in 1D numerical simulations at s = 12

for l/2 ≈ 1.8w0, where w0 is the MOT beam waist. This corresponds to the 1/e4

value of the scattering force amplitude s(x)/(1 + s(x)), suggesting that the atoms

experience a noticeable scattering force even down to very low laser intensities.8

We next present a straightforward (though imprecise) approach towards predict-

ing the capture velocity. We begin by noting the equilibrium-kinematics result for

vc,

vc =
√

2ηamaxl (A.18)

8This might be explained by noting that as the intensity decreases the interaction time increases
(corresponding to a slower atomic velocity), which helps offset the former.
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where η = a/amax as with the Zeeman slower. We next note that in order to achieve

a particular linear slowing slope, the condition

ηamax = −dv
dt

= −v dv
dx

= v
|µ′|
k

dB

dx
(A.19)

must be satisfied – i.e. the acceleration needs to be large enough to allow the velocity

to change as quickly or slowly as it does. We next make the approximation, for the

fastest captured atoms, that on average over the slowing process v = vc/2. Plugging

this in above and solving equations A.18 and A.19 yields

vc ≈ l
|µ′|
k

dB

dx
(A.20)

For the same values of l used above, this gives predicted capture velocities that differ

by typically under 2 m/s from the 1D numerical simulations.



Appendix B

Atomic Beam Flux and Spatial

Profile

In this appendix we consider the properties of the erbium atomic beam as it makes

its way from the effusive oven source at one side of the apparatus, through transverse

cooling and then Zeeman slowing, and finally towards the center of the MOT cham-

ber. The small diameter of the Zeeman slowing/differential pumping tube places

tight constraints on the range of solid angles atoms can possess out of the oven

while successfully reaching the MOT chamber; here we present simple geometrical

and mechanical arguments quantifying the nature of these constraints with an eye

towards (a) determining the allowed atomic divergence over the beam path from

oven to MOT (necessary, for instance, for matching the slowing light to the atomic

beam geometry) and (b) determining the expected capturable atomic flux at the

MOT chamber.

B.1 Spatial Profile

In an effort to roughly quantify the atomic beam size and divergence at various

points in the setup, we adopt the crude model shown in figure B.1. The atoms exit

the oven at an initial radius r = Rout from the central beam axis with a maximum

divergence angle θout and propagate along straight-line paths a distance zTC until

they reach the TC beams, at a maximum radius RTC. During transverse cooling, the

axial velocity remains unchanged while the radial velocity profile narrows, meaning

that the atoms leave at an angle θZS < θout. We next make a critical assumption

regarding the beam profile during Zeeman slowing: if we match the convergence of

the Zeeman slower beam to the divergence of the atoms, so that the ZS beam fills

68
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Figure B.1: Geometry of the atomic beam divergence model discussed in the text.
Atoms begin in the effusive oven on the left and propagate to the right through TC and
the Zeeman slower while slowly spreading out.

the full differential pumping tube at the MOT end and focuses towards the oven,

then the small radial component of the absorbed ZS photons leads to a small amount

of transverse cooling. In particular, the ratio of the radial to axial photon momenta

is precisely that of the radial to axial atom velocities for extremal atoms; thus both

velocities are reduced in a way such that θZS stays approximately constant [106].

Accordingly, in our model the atoms maintain a divergence angle θZS through the

entire Zeeman slower. The maximum allowed divergence angle out of the oven is

determined by back-propagating the trajectory of an atom whose radius is precisely

r = Rmax at the end of the slower, where Rmax is the inner radius of the ZS tube.

Onto this simple model we also add the effect of transverse heating due to spon-

taneous emission that arises during the Zeeman slowing [106], which gives a velocity

random walk vT (t) = ~k√
3m

(Γ
2
ηt)1/2, where the numerical prefactor reflects the av-

erage projection of an emitted photon onto the transverse axis, 〈cos2 θ〉1/2,1 and

η = a/amax is the ZS deceleration parameter. This results in a total expected radial

diffusion over the full slower

∆rdiff =

∫ tslow

0

vT (t)dt =
2~k

3
√

3m

(
Γ

2
η

)1/2

t
3/2
slow =

2~k
3
√

3m

(
Γ

2
η

)1/2(
vi − vf
ηamax

)3/2

(B.1)

where vi and vf are the initial and final ZS velocities. We account for this diffusion

by taking Rmax → Reff = Rmax − ∆rdiff in the geometrical calculations. For a ZS

with η = 0.5 and vi − vf = 470 m/s, we get ∆rdiff ≈ 1 mm, so Reff ≈ 3 mm for our

geometry and slower.

We quantify the effect of the transverse cooling simply by considering the equa-

tions in section 2.1.2 of this thesis. For reasonable values of the laser power between

20 and 80mW, an optimal detuning of Γ/3 = −10 MHz (this maximizes the damp-

1The square root arises since the average velocity displacement goes as the square root of the
number of scattered photons.
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ing coefficient α), elliptical beam dimensions of 35 mm × 3.5 mm, and a 500 m/s

atom, from equations 2.15 and 2.16 we see that the atom interacts with TC light for

at most 1.5 damping time constants, meaning that the kinetic energy decreases by

a factor of e−1.5 and the radial velocity decreases by a factor of
√
E ∝ e−0.75 = 0.47

during transverse cooling.2

The condition on the full radial displacement of the atoms is therefore

Reff ≥ Rout +
v

(T )
i

v
(L)
i

zTC +
v

(T )
i e−0.75

v
(L)
i

(zMOT − zTC) (B.2)

where vi is the initial velocity out of the oven in the transverse (T ) and longitudinal

(L) direction, zTC is the axial position of the transverse cooling stage measured from

the oven output at z = 0, and zMOT is the position of the start of the MOT chamber

(i.e. the point at which atoms leave the 8mm ZS tube). Solving for the velocity

ratio for extremal atoms gives

v
(T )
i

v
(L)
i

=
Reff −Rout

zTC + (zMOT − zTC)e−0.75
(B.3)

We can then get the beam divergences in this effective picture (under the small

angle/paraxial approximation commonly seen in geometric optics) from

θout, eff =
v

(T )
i

v
(L)
i

and θZS, eff =
v

(T )
i e−0.75

v
(L)
i

The final task is to switch from the effective picture to the real-space picture.

Since all of the heating happens during Zeeman slowing, the atom propagates at

θout = θout, eff from the oven to TC and at θZS, eff from TC to the start of the Zeeman

slower. The difference between Reff and Rmax is exclusively made up in the Zeeman

slower, then, leading to a larger divergence through the ZS given by

θZS =
Rmax −RZS

zMOT − zZS

=
Rmax − [Rout + zTCθout + (zZS − zTC)θZS, eff]

zMOT − zZS

(B.4)

For Rout = 0 mm this gives θZS ≈ 0.30◦ and θout ≈ 0.38◦, while for Rout = 1.5 mm

these numbers are reduced to 0.21◦ and 0.19◦, respectively. In the latter case, the

ZS divergence is larger than the output divergence, despite the TC stage, because

2The atoms do not approach the Doppler limit in this short time interval and therefore we
neglect heating effects here.
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of the effect of transverse heating during ZS. In all cases it is clear that the narrow

Zeeman slower tube limits the allowed atomic divergence to extremely low values.

B.2 Atomic Flux

The axial velocity distribution of atoms emitted from the erbium oven is given,

under the approximation that the oven aperture diameter is much smaller than the

oven-bound-atoms’ mean free path, by [41, 124, 125]

f(v, T ) =

(
πD

2

)2
pvap(T )

kBT

(
m

2πkBT

) 3
2

v3 exp

(
− mv2

2kBT

)
sin2 θ , (B.5)

where

pvap(T ) = 10A−
B

C+T

is the Antoine equation for vapor pressure, v and T are the atoms’ velocity and

temperature, D is the oven aperture diameter, θ is the angle under which atoms

are emitted from the oven, and the empirical constants A, B, and C are given by

AEr = 7.103(4), BEr = 12170(20), and CEr = 100(2) for pvap in mbar and T in
◦C [41].

By integrating this equation up to the capture velocity of the Zeeman slower,

using θ = θout from the discussion above, we can estimate the atomic flux expected

at the MOT chamber. With vc = 470 m/s and a representative emission angle

of θ = 0.25◦, this gives a flux at T = 1200◦C of Φ ≈ 7 × 1010 atoms per second.

In practice, we have not accounted for other loss mechanisms, including decay to

metastable states during Zeeman slowing (∼ 50%), a broadened velocity profile after

the Zeeman slower that could have a significant tail above the MOT capture velocity

(this broadened profile might arise due to the Gaussian laser profile, so that there

is spatial variation in the slower’s effectiveness), and the fact that we only slow one

isotope (at most ∼ 30% of the atoms). These combined mechanisms could result in

a loss of at least an order of magnitude in flux, so it is more reasonable to expect

∼ 109 atoms per second at the MOT.
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[70] T. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A. Griesmaier, S. Gio-

vanazzi, and T. Pfau, “Strong dipolar effects in a quantum ferrofluid,” Nature

448, 672 (2007).

[71] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Fer-
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M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, “Observation of roton

mode population in a dipolar quantum gas,” Nature Physics 14, 442 (2018).

[80] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrish-

nan, and B. L. Lev, “Thermalization near Integrability in a Dipolar Quantum

Newton’s Cradle,” Phys. Rev. X 8, 021030 (2018).

[81] H. Y. Ban, M. Jacka, J. L. Hanssen, J. Reader, and J. J. McClelland, “Laser

cooling transitions in atomic erbium,” Opt. Express 13, 3185 (2005).

[82] J. J. McClelland and J. L. Hanssen, “Laser Cooling without Repumping:

A Magneto-Optical Trap for Erbium Atoms,” Phys. Rev. Lett. 96, 143005

(2006).

[83] A. J. Berglund, J. L. Hanssen, and J. J. McClelland, “Narrow-Line Magneto-

Optical Cooling and Trapping of Strongly Magnetic Atoms,” Phys. Rev. Lett.

100, 113002 (2008).

[84] J. Ulitzsch, D. Babik, R. Roell, and M. Weitz, “Bose-Einstein condensation

of erbium atoms in a quasielectrostatic optical dipole trap,” Phys. Rev. A 95,

043614 (2017).

[85] D. S. Durfee, Dynamic Properties of Dilute Bose-Einstein Condensates, Ph.D.

thesis, MIT (1999).

[86] P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I.

Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084 (1989).

[87] X. Xu, T. H. Loftus, M. J. Smith, J. L. Hall, A. Gallagher, and J. Ye, “Dynam-

ics in a two-level atom magneto-optical trap,” Phys. Rev. A 66, 011401(R)

(2002).

[88] T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, and J. Ye, “Narrow line

cooling and momentum-space crystals,” Phys. Rev. A 70, 063413 (2004).

http://dx.doi.org/ 10.1126/science.aac9812
http://dx.doi.org/10.1038/s41567-018-0054-7
http://dx.doi.org/10.1103/PhysRevX.8.021030
http://dx.doi.org/10.1364/OPEX.13.003185
http://dx.doi.org/10.1103/PhysRevLett.96.143005
http://dx.doi.org/10.1103/PhysRevLett.96.143005
http://dx.doi.org/10.1103/PhysRevLett.100.113002
http://dx.doi.org/10.1103/PhysRevLett.100.113002
http://dx.doi.org/10.1103/PhysRevA.95.043614
http://dx.doi.org/10.1103/PhysRevA.95.043614
http://dx.doi.org/ 10.1364/JOSAB.6.002084
http://dx.doi.org/10.1103/PhysRevA.66.011401
http://dx.doi.org/10.1103/PhysRevA.66.011401
http://dx.doi.org/10.1103/PhysRevA.70.063413


BIBLIOGRAPHY 80

[89] T. Chanelière, L. He, R. Kaiser, and D. Wilkowski, “Three dimensional cooling

and trapping with a narrow line,” The European Physical Journal D 46, 507

(2008).
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[122] A. Bühler and H. P. Büchler, “Supersolid phase in atomic gases with magnetic

dipole interaction,” Phys. Rev. A 84, 023607 (2011).

[123] N. Navon, A. L. Gaunt, R. P. Smith, and Z. Hadzibabic, “Emergence of a

turbulent cascade in a quantum gas,” Nature 539, 72 (2016).

http://dx.doi.org/10.1103/PhysRevA.81.063608
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/ 10.1103/PhysRevLett.83.2876
http://dx.doi.org/10.1103/PhysRevLett.88.120407
http://dx.doi.org/ 10.1103/PhysRevLett.118.210401
http://dx.doi.org/ 10.1103/PhysRevLett.118.210401
http://dx.doi.org/ 10.1103/RevModPhys.84.759
http://dx.doi.org/10.1038/nature21067
http://dx.doi.org/10.1038/nature21431
http://dx.doi.org/ 10.1103/PhysRevA.96.053630
http://dx.doi.org/ 10.1103/PhysRevA.96.053630
http://dx.doi.org/10.1103/PhysRevA.84.023607
http://dx.doi.org/10.1038/nature20114


BIBLIOGRAPHY 83

[124] R. Chicireanu, Studies of Cold Chromium Atoms in Magnetic and Optical

Traps: steps towards Bose-Einstein Condensation, Ph.D. thesis, Universitè
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