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Abstract

Many ultracold atoms experiments use two linked vacuum chambers, so it
is necessary to transport atomic clouds over several tens of cm. This report
describes the design, construction and testing of a proposed all-optical system for
trapping and transporting ultracold erbium atoms. The system uses a high-power
laser beam to create an optical dipole trap for the atoms, and lenses whose focal
length can be tuned electronically to change the trap position. The theory of
the proposed system is reviewed and the project is put into the context of the
wider experiment. Results of tests of the transport system are presented and the
building of the test version of the transport system is reported.
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1 Introduction

1.1 Overview of ultracold atom systems
Ultracold atoms are used widely to test several aspects of quantum theory. Being

able to produce quantum condensates opened the possibility of a range of experiments,
with applications ranging from atom interferometry [1], precision measurements [2] and
atomtronics [3] to quantum simulation [4].

Traditionally, ultracold atomic gases are confined in harmonic trapping potentials, realised
by Gaussian laser beams or magnetic traps. However, this does not reflect the continuous
translational symmetry that many systems possess. This problem was overcome by placing
the atoms in a so-called optical box potential [5], which cleared the way for many interesting
topics to be examined, including the dynamics of passing through a phase transition at a
finite rate [6], weak collapse in a Bose–Einstein Condensate (BEC) [7] and turbulence in a
quantum gas [8].

Recent developments in laser cooling expanded the spectrum of elements that can be
condensed, including some with very high magnetic moments [9–11]. This adds a new
dimension to experiments that can be realized, introducing long-range and anisotropic,
dipole-dipole interactions (DDI) on top of the short-range and isotropic contact interactions
present in all atomic species [12]. Using these dipolar quantum gases, there are considerable
efforts [13–18] to create a supersolid, a counter-intuitive state of matter that combines
the dissipationless flow of a superfluid with the crystal-like periodic density modulation
of a solid [19]. It was proposed that this density modulation could be achieved via the
self-organisation of an excited dipolar quantum gas into quantum droplets [20–22], caused
by their special (‘roton-like’) excitation spectrum [23–25].

1.2 Overview of this experiment
The aim of our experiment is to create a dipolar erbium BEC in a 2D pancake-like

uniform trapping potential. The homogeneity of the trapping potential is crucial for accessing
the full flavour of the physics that stems from the long-range nature of the interatomic
forces. Once the core of the experimental setup is completed, we plan to first carry out a few
technical measurements, measuring the polarisability and scattering rates [26]. Once these
are completed, we aim to explore phenomena expected to occur in dipolar quantum gases,
starting from roton physics [24], measuring the roton spectrum [27] and how long-range
interactions affect the critical velocity [28, 29] and the critical temperature [30]. Furthermore,
we plan to explore the influence of long-range interactions on out-of-equilibrium physics.
Specifically, we are interested in scenarios that have already been attractive subjects in the
field, including driven [8] and quenched [6] systems. Finally, the long-term project plan is to
add a second atomic species, potassium, to expand the range of phenomena we can explore.
These will include polaron physics [31, 32] and subjects relevant to quantum information,
like qubit decoherence control [33, 34].

An overview of the apparatus can be seen in Fig. 1. Erbium is supplied via an effusion
cell oven1 emitting an atomic beam into our vacuum chamber. This beam first interacts with

1DFC-40-10-WK-2B-SHE, from Createc.
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Figure 1. The vacuum chamber of the experiment. Atoms enter from the erbium oven and then
encounter transversal cooling. They then propagate down the Zeeman slower where they are slowed
down before being captured in the MOT chamber. Finally they are transferred to the science cell with
enhanced optical access.

transversal cooling (TC) beams, which help collimate the beam by slowing it perpendicular to
its propagation direction. After this, the beam enters the Zeeman slower (ZS), which consists
of a counter-propagating laser beam and magnetic coils creating a spatially varying field
that keeps the atoms on resonance, as they slow down, using the Zeeman effect [35]. These
both use a broad atomic transition at 401 nm (blue) with a natural linewidth of 29.7 MHz,
giving a Doppler temperature of 714 µK, meaning it is very convenient for the initial stages
of cooling [36]. The Zeeman slower has a designed capture velocity of 465 m s−1 and slows
the atoms down to 6 m s−1 [37].

As the atoms slow down they reach the central part of our vacuum chamber, where they
are already slow enough to be trapped using a Magneto-Optical Trap [38] (MOT). The
MOT operates on a transition at 583 nm (yellow) that has a natural linewidth of 190 kHz,
giving a Doppler temperature of 4.6 µK. The MOT has a designed capture velocity of
7 m s−1 [37]. In practice, atoms should reach a final temperature of 10 µK and a density of
1.5 × 1011 cm−3 [39]. These atoms are cold enough to be directly loaded into an Optical
Dipole Trap [40] (ODT) used for evaporative cooling.

In our experiment, two linked vacuum chambers are used, one for initial cooling and one
for the final experiment, to allow optical access around the glass ‘science cell’. Therefore, it is
necessary to transport the atomic cloud over 50 cm. Sometimes this is done with overlapping
magnetic coils [41] or by physically moving one coil pair [42, 43], but the state we use
is not magnetically trappable. A different method is an all-optical transport which can be
performed by displacing the focus of a dipole beam in which the atoms are trapped. This has
been achieved with the focusing lens mounted on an air-bearing translation stage [44], but it
comes with the drawback of placing a cumbersome system close to the vacuum chamber,
which bears the risk of transferring vibrations to the dipole trap or the optical table.

An alternative all-optical approach was also demonstrated [45], which involves using
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focus-tuneable lenses: lenses filled with a liquid that change their focal length in response
to an applied current. Atoms are trapped in the focal point of the beam (the ODT), which
is then moved from the MOT chamber to the science cell by tuning the focal length of the
lenses (an optical tweezer). As this eliminates the risk of transferring vibrations we decided
on this solution. This project focused on the design and building of this system.

Sec. 2 explains the theoretical background of optical trapping and transporting the atoms.
The transport system is discussed in more detail in Sec. 3, focusing on system design and
results from the test implementation. An outlook to future directions is presented in Sec. 4.

2 Theory

2.1 Optical Dipole Trap
Optical trapping of atoms is an important aspect of many ultracold atom experiments. A

basic introduction into the theory of optical dipole traps is presented below, largely following
previous work in this area [36, 40, 46, 47].

An intuitive model of the optical dipole trap can be devised by considering a neutral
atom placed in an oscillating electric field. In this field E(r, C) the centres of mass of the
positive and negative charges are periodically separated by the field, which means that an
oscillating electric dipole p(r, C) is induced:

p(r, C) = UE(r, C), (1)

where U is the complex polarisability of the atom which in general has a tensorial character
and depends on the atomic species, the light frequency, the polarisation of the electric field
\? and the propagation direction \: with respect to the quantisation axis (the direction of the
magnetic field �). The atom can then be treated as a dipole that interacts with the driving
field. The dipole energy can be calculated as:

*dip(r) = −1
2
〈p(r, C) · E(r, C)〉 = − 1

2Y02
Re(U)� (r), (2)

where the relation for the field intensity � (r) = 1
2Y02 |E(r) |2 is used, Y0 is the vacuum

permittivity, 2 is the speed of light and E(r) is the field amplitude.
When the dipole is driven below resonance (‘red-detuned’ regime) it oscillates in phase

with the field and when it is driven above resonance (‘blue-detuned’ regime) it oscillates out
of phase. Below (above) resonance the interaction energy is negative (positive) and therefore
the atom is attracted to (repelled from) the region with the highest electric field intensity. A
trap will be created for negative interaction energies where the atoms are drawn to the focus
of a Gaussian laser beam (where it has its highest intensity).

The driven oscillator also absorbs energy, which is then re-emitted as dipolar radiation.
This can also be seen as a photon scattering process, where the photon is absorbed by the
atom and then spontaneously re-emitted, each time leading to a momentum transfer, which
can lead to heating and atoms being ejected from the trap. For a detuning X from a given
atomic transition the interaction energy is given by*dip ∝ �/X, while the scattering rate is
Γsc ∝ �/X2, so scattering is suppressed for large detunings at the same trap depth [46].

3



4 2 THEORY

Figure 2. Atomic polarisability U of Er in the ground state for \? = \: = 90° as a function of the
light-field wavelength. A divergence of the polarisability indicates an optical dipole transition. The
red and blue regions indicate the broad red-detuned region for long wavelengths and a blue-detuned
region in the ultraviolet range. The inset illustrates the configuration of angles \: and \? for the shown
data. � denotes the orientation of the magnetic field. We see there is a large range of wavelengths
_ > 700 nm suitable for trapping. Illustration taken from [26].

To calculate the trap depth and trapping frequencies, we need to know the polarisability
of erbium and the intensity distribution of the light. The polarisability was calculated and
measured at different wavelengths [26, 48] and can be seen in Fig. 2. The intensity distribution
of an elliptical Gaussian beam is

� (G, H, I) = 2%
cFG (I)FH (I) 4

−2
(

G2

F2
G (I)
+ H2

F2
H (I)

)
, (3)

where % is the total power in the beam. For small atomic clouds compared to the size of the
laser beam we can use a harmonic approximation of the dipole potential (Eq. (2)) to extract
the trap frequencies. We see:

*dip ≈ 1
2
m2*dip

mG2

�����
0

+ 1
2
m2*dip

mH2

�����
0

+ 1
2
m2*dip

mI2

�����
0

(4)

= − 1
2Y02

Re(U) 2%
cFGFH

(
1 − 2G2

F2
G

− 2H2

F2
H

− 1
2
I2

(
1
I2
'G

+ 1
I2
'H

))
, (5)

where FG and FH are the beam waists in the G and H direction, respectively, and I'G and I'H
are the respective Rayleigh ranges. From here, we see the total trap depth is

*0 = − 1
2Y02

Re(U) 2%
cFGFH

, (6)

which is sometimes expressed as a temperature, )0 = *0/:�, where :� is the Boltzmann
constant. By comparing the trapping potential (Eq. (5)) to the potential of a simple harmonic
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oscillator (1
2<(l2

GG
2 + l2

HH
2 + l2

I I
2)), the trapping frequencies can be extracted as

lG =

√
4*0

<F2
G

=

√
4U%

<Y02cF
3
GFH

, (7)

lH =

√
4*0

<F2
H

=

√
4U%

<Y02cFGF
3
H

, (8)

lI =

√
2*0

<I2
'eff

=

√√
U%_2(F4

G + F4
H)

<Y02c3F5
GF

5
H

, (9)

where I'eff =
I'G I'H√

1
2 (I2

'G
+I2
'H
)
=

√
2

F4
G+F4

H

F2
GF

2
Hc

_
is the effective Rayleigh range.

2.2 Time-averaged potentials
Further to changing the incoming beam size and power, the trap size and depth can also

be changed by periodically moving (dithering) the trapping beam. If the beam is dithered at
a much higher frequency than the trapping frequency, the atoms are not able to follow the
motion of the light and instead experience an effective time-averaged potential. Creating an
elongated trap is useful as a larger overlap with the MOT is then possible enabling a higher
ODT loading efficiency.

If the beam’s position is given by the periodic functions G� (C), H� (C) with period ) , the
time-averaged potential is

* (G, H) = *0
)

∫ )

0
4
−
(

2(G� (C)−G)2
F2
G

+ 2(H� (C)−H)2
F2
H

)
dC , (10)

where *0 is the original trap depth and FG,H are the original beam waists. We would like
the effective potential to be the usual Gaussian, but elliptic in one direction (let this be G).
Unfortunately, an analytic solution for G� (C) cannot be given, but if the dithering functions
are the periodic functions

G� (C) =


2�
c

arcsin
(

4C
)
− 1

)
if 0 ≤ C ≤ )

2 ,

−2�
c

arcsin
(

4C
)
− 3

)
if )2 ≤ C ≤ ),

(11)

H� (C) = 0, (12)

the resulting potential* (G, H) is approximately Gaussian [49]. The approximation is best if
the dithering amplitude � is not much bigger than the original beam waists FG , FH. A plot of
the dithering function and the resulting potential can be seen in Fig. 3.

It was decided that an acousto-optic modulator2 (AOM) will be used to dither the beam,
which can also be used to control the laser power. An AOM works by creating a sound wave
travelling through a crystal, which periodically alters the refractive index of the medium.

2AOMO 3110-197, from Gooch & Housego.
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Figure 3. (a) Plot of the dithering function described in Eq. (11) with � = 2.9FG . An arcsin function
is used to generate a roughly Gaussian potential with increased waist. (b) The resulting potential
(blue) compared with the best fit (target) Gaussian potential with waist 3FG (orange). We see the
dithered potential is close to Gaussian, but is not exactly the same.

This acts as a layered structure from which light can be reflected into Bragg peaks. The first
order deflection angle of the AOM is governed by the Bragg condition

2
EB

5AOM
sin(\3) = _, (13)

where \3 is the deflection angle, _ is the light wavelength, 5AOM is the driving frequency
and EB is the speed of sound. Therefore, changing the driving frequency of the AOM will
affect the deflection angle and move the beam slightly, which means that modulating the
AOM frequency is an effective way of dithering the beam. It can also be shown that the
diffraction efficiency is dependent on the intensity of the sound, meaning that changing the
sound intensity changes the diffracted laser intensity, which is useful in our case as changing
the laser intensity on the laser itself changes other beam properties (e.g. its waist size) as
well.

2.3 Transport
Optical transport using focus-tuneable lenses was first demonstrated in [45] and was

developed further in [47, 50].
To transport the atoms, we need to translate the focal point of the trapping beam (where

the atoms are, in the ODT) along the optical axis. In principle, a focus displacement can
be achieved using a single tuneable lens focusing a collimated beam. However, increasing
the focal length increases the waist size as well, thereby changing trapping frequencies and
trap depth during the transport. Instead of this, the system presented in Fig. 4 provides
uniform trapping conditions over the full transport distance. This is preferable, since only
strong confinement and large trap depth allow for fast transport. The two beams in Fig. 4(a)
are focused behind the static lens ! with focal length 5 at distances 5 (position A) and
2 5 (position B). Their waist sizes are equal if their divergences are. This requires beam
diameters of 3 and 23 at !, respectively, resulting in the same divergence of \ = 3/ 5 for

6
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l

4

Figure 4. The system to dynamically control the size and position of a dipole trap. (a) Transport at
constant beam waist over a distance 5 . If the separation between the tuneable lens )2 and the static
lens ! equals the focal length 5 of the latter, the two beams can be transformed into each other by
tuning 52, while maintaining the same divergence \ = 3/ 5 , thus the same waist size, between A and
B. (b) Independent control over waist size and position of the focus. Replacing the first lens with a
tuneable lens )1 allows to change the beam size at )2, resulting in a different divergence behind !.
Illustration adapted from [45].

both. The beam focused at A must be collimated before the lens, and it can be shown that
the beam focused at B must have the same divergence \ before passing !. Therefore, the
two beams have the same size at a distance 5 before !. Placing a lens (let us call it )2) with
tuneable focus 52 at this position allows continuous transformation of one beam into the
other, resulting in a moving focus with constant waist.

This can also be shown using geometrical optics. By using the thin lens equation
1/ 52 = 1/C2 + 1/:2 and using the fact that the incoming beam is collimated, so the object
distance C2 = ∞, we see the distance of the image created by )2 is :2 = 52. If the incoming
beam diameter is 3 the beam divergence after )2 is \2 = 3/:2 = 3/ 52. Now, taking the other
lens, the object distance will be 5 − 52, so using 1/ 5 = 1/( 5 − 52) + 1/G0 results in an image
distance G0 = 5 ( 52 − 5 )/ 52. The diameter at 5 is 3 5 = \2( 5 − 52) so the divergence after 5
is \ = 3 5 /G0 = −3/ 5 which is independent of 52 as expected. This is all shown in Fig. 5.

The original system [45] uses a different version of the focus-tuneable lens (FTL),
limiting 52 > 0. Therefore, the divergence could only be reduced and the beam had to be
focused before crossing )2, as can be seen in Fig. 4(a), achieved by a static lens placed in
front of )2, which in turn defines the waist size behind !. In our case, the tuneable lens has a
larger range and could also be set to produce 52 < 0, meaning the beam does not have to be
focused before )2 in our case, which is useful to avoid power fluctuations caused by dust
particles traversing the focal point. However, the same principle applies as in the original
system, and in order to gain independent control over both the position and waist size of the
focus, another tuneable lens )1 is placed in front of )2, as shown in the extended system in
Fig. 4(b).

The system was modelled in Mathematica using ray transfer matrix analysis to see how
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d

t2 = ∞ k2 = f2
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Figure 5. Schematics of the transport system. A collimated beam (object distance C2 = ∞) with
diameter 3 = 2F0 enters the system and passes )2, which focuses the beam to an image distance
:2 = 52 with a divergence \2 = 3/ 52. This image distance means a virtual object distance of −(:2− 5 )
for the lens ! since the distance between )2 and ! is 5 . Using the thin lens equation, we find the final
image distance, the actual focus of our beam at G0 = 5 ( 52 − 5 )/ 52 with a divergence \ = −3/ 5 . This
is independent of 52 as expected, so when 52 is changed the beam waist is constant and transported.
The position of )1 is indicated in the figure but is not used for this calculation.

the laser beam propagates through the system enabling us to compute the waist size and the
focus position for any focal length tuple ( 51, 52). Ray transfer matrix analysis (also known as
ABCD matrix analysis) is a type of ray tracing technique used in the design of some optical
systems [51]. It involves the construction of a ray transfer matrix which describes the optical
system; tracing of a light path through the system can then be performed by multiplying this
matrix with a vector representing the light ray.

In the thin lens approximation, ray propagation over free space ; and ray diffraction at a
lens with focal length 5 can be described with the following ray transfer matrices:

P; =
(
1 ;

0 1

)
, L 5 =

(
1 0
−1/ 5 1

)
. (14)

The full system transfer matrix is then

SG = PGL 5P 5 L 52P;L 51 , (15)

where G is the distance after ! and ; is the distance between )1 and )2. Let us now assume a
Gaussian beam with waist size F0, waist position I0 and wavelength _ propagating through
the system, along the optical axis (I direction). The complex beam parameter @(I) is defined
as

1
@(I) =

1
'(I) − 8

_

cF(I)2 , (16)

where '(I) is the radius of curvature of the beam and F(I) is the beam’s radius. From this,
we immediately see that the beam radius is

F(I) =
√

_

c Im(−1/@(I)) , (17)

and the focus position is given by the condition

Re(@(I)) = 0. (18)
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Figure 6. Ray trace of the proposed system after passing the static lens ! with ; = 30 cm, 5 =
40 cm, F0 = 4 mm and _ = 1030 nm. 51 is set to infinity in this plot, so effectively that tuneable lens
is switched off. We see the beam is focused after !. When 52 is changed we see the beam waist FG is
constant and transported.

Now, assuming the incoming beam is collimated at )1 with waist F, which we choose to
be the origin of our coordinate-system, i.e. I0 = 0 and so '(0) = ∞, the incoming beam
parameter is

@0 = 8
cF2

_
. (19)

Using the ray transfer equation
@C =

�@0 + �
�@0 + � , (20)

where SG =
(
� �

� �

)
and this acts on the light vector proportional to

(
@0
1

)
. We find in our

case:
@C = G − 5 + 5 2

(
1
52
+ cF2 + 8 51_
( 51 − ;)cF2 − 8 51;_

)
. (21)

We can use this to find the waist size at the trap F0 and the focus position G0 using
Eqs. (17) and (18), respectively, as F0 = F(0):

F0 =
5 | 51 |F_√

( 51 − ;)2(cF2)2 + ( 51_;)2
, (22)

G0 = 5 − 5 2

(
1
52
+ ( 51 − ;) (cF

2)2 − 5 2
1 _

2;

( 51 − ;)2(cF2)2 + ( 51_;)2

)
. (23)

We see F0 is independent of 52 so it stays constant throughout the transport as expected.
Also note that apart from the last term in G0 which is a small Gaussian-ray correction, it is
the same as we get from geometrical optics. A ray trace for our system can be seen in Fig. 6.
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Figure 7. (a) Schematic view of the optical system for trapping and transporting the atoms. The beam
is collimated to a 0.45 mm waist using a telescope ( 51 = 300 mm, 52 = 100 mm) and a pinhole is
used to filter out the so-called cladding modes. An AOM is used to deflect the beam and to control its
power. Another telescope ( 53 = −50 mm, 54 = 400 mm) is used to magnify the beam to a 4.0 mm
waist. Two focus-tuneable lenses (arranged vertically) in conjunction with the final focusing lens
( 55 = 400 mm) allow control of the ODT size and position. (b) Realistic drawing of the transport
system.

3 Experimental system
This project focused on designing and building the optical dipole trap (ODT) for trapping

laser-cooled erbium atoms and the transport system for moving them approximately 50 cm
to the science chamber. It builds on previous work undertaken earlier by this [36, 47] and
other research groups [39, 45, 46, 49, 50].

The design process along with some initial tests is presented in Sec. 3.1 and results from
the test setup can be found in Sec. 3.2.

3.1 System design
We first consider the required trap depth. Although the laser cooled atoms are at around

10 µK we expect some heating when compressing atoms into the ODT from the MOT. Atoms
thermalise to approximately 1⁄10 of the trap depth [52, 53], so we require a trap that is

10



3.1 System design 11

several hundred µKs deep while maximising the spatial overlap with the MOT. The optimum
trade-off between ODT size and depth is not known and may vary, for example, a large beam
will probably optimise initial loading from the MOT but a smaller beam will be needed to
ensure a large enough trapping frequency along the transport direction to avoid sloshing in
the trap. Therefore, a scanning beam scheme is implemented to allow the ODT size to be
dynamically tuned.

What is practically possible is also constrained by the laser power available. Although a
wide range of wavelengths could be used for the ODT (see Fig. 2), given the availability of
high power lasers and the fact that there is an issue with trapping the fermionic isotope 167Er
using the common ND:YAG laser at 1064 nm [39], it was decided that a 45 W, 1030 nm
fibre laser3 will be used [36]. The ODT and the transport uses the same laser beam.

The free parameters to match the requirements are the various lenses, distances and beam
sizes in the transport setup and the ODT, giving a fairly large parameter space, but this is
constrained by the clear aperture of the FTLs and the AOM used to dither the beam and to
control its power. The system devised gives a trap depth of 655 µK and trapping frequencies
lG,H = 1.73 kHz, lI = 12.2 Hz and can be seen in Fig. 7. Below we describe the process
that lead to create this system.

First of all, the beam properties of the laser had to be measured. As shown in Fig. 8(a)
we found that the beam fits a Gaussian propagation model well. However, it is important
to note that the beam waist and its position changes considerably when the output power
on the laser is varied (see Fig. 8(b) and (c)), so all measurements presented in this report
correspond to using the laser at the highest output power (45 W), as we need all the power to
create a deep enough ODT. We also found that there are some so-called cladding modes
present which can make the beam doughnut-shaped close to its focus. This issue was solved
by putting an iris at the focal point of the first telescope (see Fig. 7).

Next, we had to pick a beam radius F0 incident on the first FTL and a value for the final
fixed focal length lens 5 and the distance between the two tuneable lens ;. The original
transport system [45] was slightly modified [47, 50] to use a different version of the tuneable
lenses4 capable of producing a wider range of focal lengths. These lenses were tested
during two master’s projects [47, 50] to see how stable they are, to what extent they tolerate
heating and how quickly they settle at the focal length set. It was found that the lenses work
sufficiently well, but they have to be used with their optical axis being vertical and that
thermal drifts need to be compensated. A basic test setup was built in both cases, but these
needed to be redesigned to match the requirements (trap depth, transport length) of our
experiment.

Regarding trapping conditions, we have to load the ODT 10 cm away from the final lens
that is mounted right next a the viewport of the vacuum chamber, and we have to achieve a
beam waist that results in a trap depth that is several hundred µKs deep. We then have to
transport our atoms into the glass ‘science cell’ 50 cm away from the final lens. We also have
to make sure that our beam is small enough so that it can go through the tuneable lenses (clear
aperture 16 mm) and need to keep in mind that their range is −2 m−1 < 1/ 51,2 < 3 m−1.

To explore the parameter space, multiple plots like *0(F0, 51), G0(F0, 51), G0( 5 , ;)
3ALS-IR-1030-50-I-SF, from Azure Light Systems.
4EL-16-40-TC-VIS-5D, from Optotune.
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Figure 8. (a) Plot of the Gaussian beam radius against distance from the laser head. The data fits the
Gaussian propagation model well. The fitted beam waist is FG,0 = 488(22) µm and the waist position
is I0,G = 165(3) cm, measured from the laser head. (b) Beam waist against the laser power. It can be
seen that the waist changes by more than 100 µm when the laser power is turned all the way up. (c)
Beam waist position measured from the laser head, against the laser power. It can be seen that the
waist position changes by around 25 cm when the laser power is turned all the way up.

and G0( 5 , 52) were created. The laser power is 45 W, so 30 W was used throughout the
calculations to account for losses (e.g. the reflection from optical elements or the limited
AOM diffraction efficiency), to be on the safe side. The polarisability was taken to be
U = 166 a.u. = 2.74 × 10−39 C m2 V−1 [26]. It was found that the combination ; = 30 cm, 5 =
40 cm, F0 = 4 mm would mean that when )1 is switched off, we get a trap that is 655 µK
deep (33 µm waist) and that we can transport the atoms by tuning −1 m−1 < 1/ 52 < 2 m−1.
Using a large part of the available range of 52 is useful as the focus position will be less
sensitive to fluctuations in 52. By tuning −1.1 m−1 < 1/ 51 < 1.1 m−1 we can still transport
the atoms over the whole distance but can change the trap waist 25 µm < F < 50 µm. This
in turn changes the trap depth, which can also be changed by changing the power in the beam
using the AOM. The incoming beam waist is also ideal as it is small enough so that there
will be no clipping, meaning no power loss or beam profile corruption, but large enough to
be able to focus it tightly.

Finally, the dithering system had to be designed. A telescope makes the beam size small

12



3.2 Test setup 13

enough to fit into the AOM. Finding the right magnification took multiple rounds, as it turned
out that the active aperture of the AOM is considerably smaller than specified (1.25 mm),
meaning that the top and the bottom of the beam is not deflected, resulting in an elliptical
beam in the first order. We now use an incoming beam diameter of 0.9 mm which still results
in a slightly elliptic beam, but we did not want to make the beam smaller fearing it would
compromise our diffraction efficiency and hence the power in the ODT. We also made this
telescope to deliberately focus the beam, to filter the cladding modes with a pinhole around
the focus as these modes are highly divergent. Virtually no power loss through the pinhole
was measured at high powers. It is also important to mention that the telescope was designed
to collimate the incoming laser beam, which is otherwise convergent.

We then calculated how much we can dither the beam by to be able to trap as many
atoms as possible while maintaining a sufficient trap depth and avoiding any clipping on the
lenses. Turning again to the ABCD formalism, we know(

A

i

)
= Ssystem

(
A0
i0

)
, (24)

where A (0) is the (initial) distance of the beam from the optical axis, i(0) is the (initial) angle
the beam makes with the optical axis and Ssystem is the ABCD matrix describing the whole
system after the AOM (i.e. the telescope magnifying the beam and the transport system). We

know A0 = 0, and so by substituting our values to get Ssystem we get
(
A

i

)
≈

(
0.05 m i0
−6i0

)
.

Without clipping we can dither the beam such that its waist becomes three times as big
as the original (i.e. increasing FG to 100 µm, with a MOT approximately 1000 µm wide).
As we know F0 = 33 µm, we would like to have A ≈ 100 µm meaning i0 = 0.1°. Using
Eq. (13) we find Δ 5AOM = 15 MHz for our AOM. As the central frequency of our AOM is
50 = 110 MHz we see Δ 5AOM is doable. We also see the maximum beam angle at the ODT
i = 0.6° will not be too large, and the beam will be dithered roughly parallel to itself.

From a more technical point of view, the telescopes were designed to have one convex
and one concave lens each to avoid focusing a high-power beam which could lead to power
fluctuations if something gets in the focus. The lenses were put in a cage system and
built using fixed height posts to minimise the necessary alignment. The whole experiment
including the FTLs and the AOM is computer controlled through National Instruments
cards5, for which a breakout box was designed and built to be able to communicate via
BNC cables. From the software side, the experiment is controlled using the Cicero sequence
generator6, communicating with the NI chassis. It is proposed that the dithering sequence
will be controlled via an FPGA chip7, but this is still under development. For testing purposes,
dithering was controlled via a signal generator.

3.2 Test setup
After this design process, a test setup was built to see how well it can maintain a constant

waist over transport and how any drifts can be compensated. The AOM and the dithering

5NI PXIe-6733, NI PXIe 6738 and NI PXIe-6536.
6Created by Aviv Keshet, available at http://akeshet.github.io/Cicero-Word-Generator/.
7STEMlab 125-10 from Red Pitaya.
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14 3 EXPERIMENTAL SYSTEM

(a) (b) (c)

Figure 9. Beam images from the test system. (a) The first order beam after the AOM. An elliptic
beam can be seen with FG = 450 µm, FH = 360 µm (FG/FH = 1.25), but the beam is otherwise
Gaussian. The fringes are an imaging artefact. (b) The undithered trapping beam focused near the
MOT position. The beam is Gaussian with beam waist FG,0 = 44 µm, FH,0 = 53 µm. (c) Dithered
beam with a dithering amplitude � = 2.6FG,0. The beam remains Gaussian, with an increased beam
waists FG = 121 µm, FH = 54 µm.

also needed to be tested, to see if they match the design parameters. There were some rather
confusing problems caused by the high-power beam and the tuneable lens during building
the test setup, and identifying the source of the curious beam shapes and circumventing the
problems took a significant amount of time. High power imaging techniques along with
beam quality quantisation are presented in Sec. A.

Regarding the AOM, the first order beam is used to be able to dither the beam via
modulating the AOM frequency and to control its power via the RF power (the zeroth order
is picked off and dumped). 2 % insertion loss and 92 % diffraction efficiency were measured
when the AOM was driven at its centre frequency (110 MHz), which is slightly better than
the specifications of the device (4 % and 90 %, respectively). It is important to note that
the AOM distorts the circular beam to be slightly elliptic, with its major axis becoming
25 % larger than its minor axis. The beam was focused down to 450 µm waist (instead of the
specified aperture radius of 625 µm) using a telescope to decrease the ellipticity, but was
not decreased further fearing it would compromise the diffraction efficiency resulting in a
smaller power in the ODT. An image can be seen in Fig. 9.

After this, a second telescope was built, which increases the beam waist to 4.0 mm.
While beam sizes were usually measured by imaging them with a camera and then fitting a
Gaussian on top, as this beam was too wide to image its waist was measured by moving a
knife-edge through the beam.

The two focus-tuneable lenses were then inserted. Due to heating up, while the beam
shape remains Gaussian for the first 2.5 s, a focal length drift can still be seen. The lenses’
optical power � = 1/5 could be set via applying a DC voltage to their driver so a focal-length
drift can be compensated by applying a variable voltage. The lenses were set to focus at the
atoms’ final position, and the focus position drift rate was measured by imaging the beam
along its focus for 5 s and then finding the focus position G0(C). Without compensation, a
constant drift rate of 2.5(1)mm s−1 could be seen, while with compensation on, this could
be brought down to 0.25(6)mm s−1. For this, a compensation rate ¤� = 0.016 m−1 s−1 need
to be used. The same measurement was carried out close to the MOT position and the same
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Figure 10. Results from the tuneable lens testing. (a) Beam quality as a function of time elapsed
after shining light on the lenses. We see it remains roughly constant for 2.5 s after which it decreases
indicating a significant distortion of the beam shape. The beam quality number is discussed in Sec. A.
(b) The ODT position measured on a translation stage as a function of time, with no compensation. A
fitted drift rate of 2.5(1)mm s−1 can be seen. (c) The ODT position measured on a translation stage as
a function of time, compensation on. A much smaller fitted drift rate of 0.25(6)mm s−1 can be seen.

final drift rate was achieved using the same compensation rate. The constant waist transport
was also tested. At the MOT position the beam waist was FH,MOT = 44 µm, at the final
position the beam waist was FH, final = 48 µm. This is a 9 % increase which we attribute
to non-perfect alignment that we hope to correct in the final setup. Results can be seen in
Fig. 10.

Finally, the dithering was tested. We needed to make sure that the beam is dithered much
faster than the relevant trapping frequency, lG = 1.73 kHz, to avoid parametric heating of
our atoms. However, we cannot dither the beam arbitrarily fast, as high-frequency dithering
(i.e. high-frequency modulation of the AOM frequency) is limited by how quickly the AOM
driver can respond to frequency modulation. By dithering the beam at constant amplitude,
but at different frequencies, we found we can dither the atoms at a frequency of up to 50 kHz,
which is fast enough. We also needed to test how well the resulting trapping potential matches
the theory. As the resulting trap is not exactly Gaussian, there is no analytic formula to
express the waist size as a function of the dithering amplitude. However, we can always fit a
Gaussian to it, and take its waist as the expected beam waist. We found very good agreement
with the theory, the dithered trapping potentials were Gaussian and the resulting beam waists
were close to expected. Results can be seen in Fig. 11.

4 Conclusions and Outlook

4.1 Conclusions
An all-optical system using focus-tuneable lenses to trap and transport ultracold erbium

atoms was designed, constructed and tested. The system designed can trap atoms with a
trap depth of 655 µK and can transport them over 50 cm. The size of the trap can be varied
between 25 µm and 50 µm. The test setup achieves a waist size FG,0 = 44 µm. Time-averaged
potentials were also introduced using an acousto-optic modulator (AOM) and we found we
can dither the beam at up to a 50 kHz rate above which the AOM driver cannot follow the
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Figure 11. Results from the dithering tests. (a) Waist size against the dithering frequency, at constant
dithering amplitude of � = 2.6FG . A significant reduction in waist size can be seen for frequencies
over 50 kHz, indicating that the AOM driver cannot respond to such high-frequency modulation. (b)
Waist size against dithering amplitude, at constant dithering frequency of 20 kHz. The resulting beam
waists match the expected waists well.

driving frequency modulation. This could make the waist up to three times as large as the
original (we measured FG = 121 µm with the test setup) and the resulting trap widths match
the theoretical values well. The results so far look promising regarding the viability of the
system proposed for the optical dipole trap and for transport.

4.2 Next steps & future directions
The final version of the system is currently being integrated with the rest of the experiment.

Once we have a MOT with suitably large atom numbers the ODT loading efficiency and
the trap depth will be tested and optimised using the tuneability designed in the system.
The atoms can then be evaporatively cooled which will be followed by testing the transport
efficiency, i.e. how many atoms we lose throughout the transport, which will also involve
optimising the transport sequence to find out what the velocity of the trap E(C) should be
throughout the transport to lose the least atoms but also maintain their low temperature.
The atoms will finally be loaded into a quasi-2D optical box (see Fig. 12) generated from
a red-detuned sheet-beam and a blue-detuned wall, created with a spatial light modulator
(SLM). The SLM setup is currently being designed and tested.

Having the atoms condensed and loaded into the optical box brings us to the point at
which we can start with long-term research work on both the equilibrium and non-equilibrium
properties of the dipolar Bose gas. More details of our specific plans are given in my Project
Initiation Plan.
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4.2 Next steps & future directions 17

Figure 12. Polarized gas of erbium atoms captured in a 2D box potential. The potential is created with
a red-detuned sheet-beam and a blue-detuned wall, created with an SLM. The atoms are polarized
due to a magnetic bias field.
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18 A HIGH-POWER BEAMS

Appendix

A High-power beams
Most of our optics and devices were not prepared to bear such high powers and intensities

that we use. In fact, another group have already abandoned using the same type of lenses and
switched to fixed focal length lenses made of a different material (UV fused silica instead of
N-BK7, as the former has a lower thermal expansion coefficient, causing a smaller thermal
lensing effect) and also decided to use a transport system with lenses on a translation stage
instead of the focus-tuneable lenses (FTLs) precisely because they do not operate well under
high power [54].

This was not easy to foresee as the FTLs have a damage threshold that is much higher
than the laser intensities we use. In line with this, the lenses are not permanently damaged in
our setup but show very significant thermal lensing, meaning they can only be used during
the first few seconds after the laser light reached them and then they need to be left cooling
for around 30 s. On top of this, these lenses have to be used with their optical axes vertical.
This is not ideal, but in our experimental sequence we will only have high power on the
lenses for a short time, so we are going ahead with this solution. Regarding the fixed focal
length lenses, using N-BK7 lenses made by Thorlabs seemed suitable in our case, and no
difference could be seen when lenses made of UV fused silica were substituted for lenses
made of N-BK7.

Another problem with characterising our setup was imaging high intensities (e.g. the
ODT at full power) as most intensity filters break at such high powers and cubes do not work
perfectly either.

These problems were not straightforward to circumvent, and the high power imaging
techniques are presented in Sec. A.1 along with beam quality quantisation are presented in
Sec. A.2. A few images of the various problems are presented in Fig. 13.

A.1 High-power beam imaging
It was not straightforward to image a 45 W beam, given this is too much for a camera and

no filter can take such high power. As the filters can take up to 10 mW at the beam waists we
use, we need to filter out as much as 99.98 % of the light. Traditionally, to achieve this, a
combination of a half-wave plate placed in front of a polarising beamsplitter cube is used.
The waveplate rotates the polarisation of the light which is then split by the cube, so by
rotating the waveplate the transmitted light intensity can be controlled. In our case, the cube
transmits horizontally polarised light, and since the laser polarisation is vertical it has to be
rotated by only a very small amount to get suitably low power in the transmitted wave.

The problem with this, and this took quite some time to figure out, is that there is a
horizontally polarised part of the laser light that has a strange pattern, which then also gets
transmitted through the cube. While the power in this originally horizontal part (power
� = 40 mW) is much smaller than that of the vertical part (power+ = 45 W), it is comparable
to the transmitted portion of the vertical part we really want to look at, and so we observe a
pattern that is really not Gaussian (c.f. Fig. 13(b)). We also tried to image the beam by trying
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A.1 High-power beam imaging 19

(a) (b)

(c) (d)

Figure 13. Different issues with the laser beam during initial testing. (a) The beam coming out of the
laser near its waist. The beam is doughnut-shaped, due to cladding modes present. A Gaussian shape
can be restored by filtering these modes out, putting an iris at the focus. (b) Problems with high-power
beam imaging. This beam shape is an imaging artefact, caused by internal reflections and the finite
extinction ratio when a cube and waveplate is used to reduce the power to image the beam. The
solution to circumvent this is presented in Sec. A. (c) Comatic aberration when the focus-tuneable
lens is used with the optical axis horizontal. This can be solved by turning the lens to have its optical
axis vertical. (d) Thermal lensing, caused by the heating up of the focus-tuneable lens. A severely
distorted beam shape develops over 5 s, so the lens can only be used for a few seconds after which is
needs to cool down, taking 30 s.

to look at the transmitted part through a back-polished mirror, but this was not successful as
the transmission ratio was too low.

The solution is to introduce a beam sampler between the waveplate and the cube. To
get the smallest amount of light through the system we need to look at the ?-polarised (i.e.
horizontal) light as the reflectance of the beam sampler is much smaller for ?-polarisation
than it is for B-polarisation (i.e. vertical). The idea then is that we turn the waveplate so it
rotates the polarisation of the laser by 90°, so a small part of + and a larger part of � is
reflected. This is not a problem, since + � �, and so the cube will now be able to filter out
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20 A HIGH-POWER BEAMS

the � part which is now vertical, enabling us to look at the transmitted + part.
Mathematically, if the waveplate rotates the polarisation by \, the power in the horizontal

part of the beam after the waveplate (?-polarisation) will be %? = + sin2(\) + � cos2(\),
while in the new vertical part (B-polarisation) it will be %B = + cos2(\) + � sin2(\). If
the reflection coefficients for the two polarisations are '? and 'B, with 'B � '?, the
total reflected power is % = '?%? + 'B%B. Due to the large power imbalance between the
? and the B part, we have to take into account the finite extinction ratio of the cube, 4.
Assuming a horizontal transmittance close to 1, the total power transmitted through the cube
is %C = '?%? + 1

4
'B%B. '?,B are a function of the angle of incidence \8 of the laser on the

beam sampler and the refractive index of the beam sampler =:

'? =

���������
√

1 −
(

sin(\8)
=

)2
− = cos(\8)√

1 −
(

sin(\8)
=

)2
+ = cos(\8)

���������
2

, (25)

'B =

���������
=

√
1 −

(
sin(\8)
=

)2
− cos(\8)

=

√
1 −

(
sin(\8)
=

)2
+ cos(\8)

���������
2

. (26)

In theory, we can then make %B arbitrarily small by adjusting \8, but for our model of
beam sampler8 we see the smallest we can make '? is 0.0022 % with 'B ≈ 1000'? at the
same angle. We also see that the extinction ratio for the transmitted beam of our cube9 is
4 ≈ 1000.

If \ = 0°, the transmitted power is %0 = '?� + 1
4
'B+ , whereas if \ = 90°, the transmitted

power is %90 = '?+ + 1
4
'B�. These are roughly equal, as substituting the known ratios we

get % ≈ '? (+ +�) in both cases, which was confirmed by measurement. Since+/� ≈ 1000,
we get % ≈ '?+ , so we can look at only the + part in both cases. However, we prefer to look
at the \ = 90° case as then we can look at a directly transmitted + part rather than relying on
it being transmitted due to the non-perfect finite extinction ratio of the cube.

With this technique we can get rid of all the high-power imaging artefacts. The system
can be seen in Fig. 14.

A.2 Beam quality
Due to observing many different, non-Gaussian patterns, we had to devise a metric

describing how close our beam is to a perfect Gaussian. While there are many different ways
to do this, what we are really interested in is how well trapping will work, i.e. how high the
peak intensity is of the beam compared to a Gaussian beam with the same total power.

To measure the peak intensity, we look at our beams with a camera with square pixels of

8BSF10-B, from Thorlabs.
9CCM1-PBS253/M, from Thorlabs.
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λ/2 BS beamdump

cube

beamdump camera

Figure 14. The system to image the high-power beam. The beam goes through a waveplate rotating
its polarization by \ = 90° and then reflects from a beam sampler (BS) at roughly \8 = 55° angle of
incidence. It then goes through a polarising beam splitter cube so the horizontal polarization is kept
and then it is imaged with a camera.

size 0. The intensity distribution of a Gaussian beam is:

� (G, H) = �04
− 2G2

F2
G

− 2H2

F2
H , (27)

where �0 is the peak intensity and FG,H are its waists. Now, the brightness of each pixel
depends on the power incident on the pixel, and at the central pixel we will record a power of

%2 =

∫ 0
2

− 02

∫ 0
2

− 02
� (G, H) dG dH =

1
2
�0cFGFH erf

(
0√
2FG

)
erf

(
0√
2FH

)
. (28)

The total power in the beam is

%0 =

∫ ∞

−∞

∫ ∞

−∞
� (G, H) dG dH =

1
2
�0cFGFH, (29)

so the relative power on the central pixel compared to the total power for a perfectly Gaussian
beam is

%rel =
%2

%0
= erf

(
0√
2FG

)
erf

(
0√
2FH

)
. (30)

For the imaged beam, we can record the total power by summing all pixel values. To
get the central power, we can select the brightest pixel and claim it is the centre of the
beam where atoms will be trapped, or if the beam is reasonably Gaussian, we can also fit
a Gaussian to it and extract the peak power from that. The ratio of these two will be the
experimentally measured %rel, exp which we can compare to the theoretical %rel we expect,
and create the metric

�rel =
%rel, exp

%rel
. (31)

If �rel ≈ 1 it means the peak intensity is close to what we expect of a Gaussian beam, if
�rel < 1 it means the peak intensity is smaller than what we would like to see.
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