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Trinity College

This dissertation is submitted for the degree of
Doctor of Philosophy

Supervisor: Dr Robert Smith

June 2021

Cavendish Laboratory
Department of Physics





To my dearest sister Katarina,
parents Tamara and Dragutin,

grandma Milica
and in the loving memory of my grandparents

Slobodanka, Milorad and Danilo. . .





Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work
done in collaboration except as declared in the Preface and specified in the text. I further state
that no substantial part of my thesis has already been submitted, or, is being concurrently
submitted for any such degree, diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and specified
in the text. It does not exceed the prescribed word limit for the relevant Degree Committee.

Milan Krstajić
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Abstract

Title: Experimental Platform for a Box-Trapped Dipolar Quantum Gas

Author: Milan Krstajić

This thesis describes the design and building of an experimental platform for investigating
many-body physics in homogeneous dipolar quantum gases of erbium. The interest in such
systems lies in a multitude of quantum phenomena that stem from dipole-dipole interactions,
particularly their long-range and anisotropic nature. Consequentially, dipolar quantum gases
make up an increasingly popular branch within an already thriving field of ultracold quantum
gases. The thesis details the design, construction and testing of the experimental setup,
including the vacuum chamber, optical and laser systems, magnetic fields and supporting
control and data acquisition systems. I present results describing both the progress towards
reaching the goal of an erbium Bose-Einstein condensate in an optical box potential as well as
the difficulties encountered along the way. At present, the experiment is capable of producing
clouds with 100 million atoms at the temperature of 15 microkelvin in the magneto-optical
trap, which translates into about 15 million atoms at 50 microkelvin following transfer into
an optical dipole trap. I detail the remaining steps to complete the intended goal and present
an overview of some of the research topics our platform will make accessible, including
roton physics, out-of-equilibrium many-body phenomena and dynamics of phase transitions
in systems with long-range interactions. I also briefly touch upon the subject of expanding
the apparatus to a dual species experiment with potassium, which will enable investigating
systems with impurities. Finally, these discussions are augmented with results from numerical
simulations on the stability of a dipolar quantum gas in a general power-law trap (of which
the optical box is an example), that are likely to help with planning future experiments.
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Chapter 1

Introduction

In this thesis, I am offering a detailed overview of the experimental effort I have undertaken
together with my supervisor and colleagues, in designing and setting up a platform for
investigating many-body quantum physics in systems with dipolar interactions. The full
duration of my PhD course is covered, starting from October 2017 until June 2021, and
I address the motivation for building the experiment, all the design considerations and
theoretical calculations that were factored in and report on the progress in building and
commissioning the system. Finally, the thesis also describes the research projects that are
planned for the near future, once the experiment is fully operational.

1.1 Overview of Ultracold Atom Systems

In the past three decades, ultracold atom experiments have become known as very capable
testbeds for theoretical models from condensed matter physics and many-body quantum
mechanics. Following breakthrough research in laser cooling and the development of the
Magneto-Optical Trap (MOT) [1], a degenerate quantum gas of bosons, the Bose-Einstein
Condensate (BEC), was created in 1995 at JILA [2] with 87Rb and MIT [3] with 23Na in
quick succession, and shortly after that, with 7Li at Rice University [4]. Reaching quantum
degeneracy in a fermionic system followed in 1999 [5]. With these achievements enabling
the creation of macroscopic quantum-correlated systems, the ground was laid for experiments
that can probe fundamental aspects of many-body quantum physics. The research that ensued
has brought about an arsenal of tools and techniques that keep the field of ultracold atoms
at the forefront of the wider scientific topic of quantum simulation. As a result, scientists
now have at hand different trapping geometries ranging from various types of bulk traps to
optical lattices, as well as the ability to tune the strength [6, 7] and nature of the interactions
and address the atomic internal states with electro-magnetic fields and radiation. Some of
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the most prominent achievements in the early days of the field include the demonstration of
matter-wave interference of two BEC’s [8] directly showing the spatial coherence of the state
[9], the realisation of the BEC-BCS crossover [10–12], observation of quantised vortices and
lattice ordering of vortices [13–15] and the observation of the Mott insulator transition in
optical lattices [16]. Nowadays, the interests in the field are turned towards numerous topics -
systems out of equilibrium [17], condensed matter lattice models [18], dynamics of phase
transitions [19], precision metrology [20] and quantum information [21] - to list a few out of
many. What is common to most of the approaches is the concept of tuning the Hamiltonian
of the system to match a desired model, bringing the system into a specific initial state and
then looking at the subsequent evolution. That is in essence the definition of a quantum
simulator and the extensive ability of parameter tuning in cold atom systems makes them
ideal for this purpose.

Confinement of atoms is realised either with magnetic fields or non-resonant light fields
via the AC Stark effect. In both cases, the imposed fields create a potential well, or in the
case of optical lattices - a periodic array of wells, trapping the atoms. Most of the common
methods, e.g. an optical dipole trap made out of focused Gaussian beams or a magnetic
TOP trap, result in (approximately) harmonic trapping potentials. This suffices for many
applications, still offering a decent degree of tuning freedom in terms of the aspect ratio,
anharmonicity or tightness of the trap, but falls short in simulating models that require
homogeneous density. Fortunately, techniques for sculpting light intensity patterns have
enabled the development of the optical box potential [22], opening the door for numerous
experiments that called for uniform systems, such as exploring the dynamics of the phase
transition to BEC [23] or turbulent flow [24].

In addition to the ability to tune the geometry of the trap, the available trapping methods
allow for the creation of systems of reduced dimensionality. By imposing sufficiently tight
trapping along one or two directions, the system can be forced into motional ground states
along these axes, effectively freezing out these dimensions. This was realised in various
ways, leading to the observation of inherently one-dimensional [25, 26] or two-dimensional
effects [27].

The discovery of Feshbach resonances in ultracold atom [6, 7] systems was probably one
of the most deciding moments for the future of the field. The situation was already favourable
as, due to low thermal energies involved, the interactions in most cold gases could be well
described by a hard-sphere model involving only two-body collisions - a model with only
one parameter, the scattering length - and the Feschbach resonances can now be used to tune
this parameter. The possibilities range from changing the nature of the interactions between
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Fig. 1.1 Bose-Einstein Condensation of Different Atomic Species - The periodic system of chemical
elements with the chemical elements that have been successfully condensed into a BEC highlighted.
The fields also state the year when the condensate was first reported.

repulsive and attractive to turning them off completely or making them as strong as quantum
mechanics allows - the so called, unitarity limit.

More recently, the development of the specific laser cooling techniques required for more
exotic species expanded the spectrum of elements that can be cooled to quantum degeneracy
(Figure 1.1). This includes a few elements with very high magnetic moments (chromium
[28], erbium [29], dysprosium [30]) adding a new dimension to experiments that can be
realised, introducing long-range and anisotropic, dipole-dipole interactions (DDI) on top of
the aforementioned contact interactions, that are inherently short range and isotropic.

First results obtained with chromium demonstrated the anisotropic nature of the dipolar
force and how it is reflected in the aspect ratio of a trapped cloud [31] or density patterns
emerging after collapse of a cloud brought to instability [32] and the examination of the
impact of the dipole-dipole interactions on the stability of a BEC [33]. Further advances came
with condensates of dysprosium and erbium, as their higher magnetic moments combined
with larger atomic masses make dipolar interactions even more pronounced relative to contact
interactions. Furthermore, in these two elements, the contact interactions can be tuned more
readily, due to the abundance of accessible Feshbach resonances [29, 34]. This eventually
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Isotope 162Er 164Er 166Er 167Er 168Er 170Er

Abundance 0.14% 1.61% 33.6% 23.0% 26.8% 15.0%

Statistics boson boson boson fermion boson boson

Table 1.1 Erbium Isotopes - Abundances and spin statistics of different erbium isotopes.

allowed for the detection of the roton-minimum in the excitation spectrum of a strongly
dipolar gas [35, 36], signalling similarities with strongly correlated systems like liquid helium
[37], with the additional ability to tune the roton minimum depth via the contact interactions.
The earlier observation of dipolar quantum droplets, emerging from a cloud collapsing due to
strong dipolar interactions [38, 39], was also linked to the roton instability, eventually leading
to the creation of an exotic and interesting supersolid state of matter [40–42], combining
both spatial order and the phase coherence of a superfluid.

At this moment, there is a number of experiments with magnetic ultracold atoms (Er or
Dy) around the world, including the ones in Innsbruck [29], in Stuttgart [43], at Stanford
[30], at Harvard [44], at MIT [45], in Bonn [46], in Paris [47], in Pisa [48], in Hong Kong
[49] etc.

Finally, it would be a mistake not to mention that the fields of ultracold molecules [50, 51],
Rydberg atoms [52] and trapped ions [53] have been developing at an equally fast pace side-
by-side with the systems with ultracold neutral atoms, sharing many of the experimental
techniques and striving towards similar objectives. Relevant for this topic, ultracold polar
molecules and Rydberg atoms are also promising platforms for researching many-body
physics with dipole-dipole interactions. Both types of systems offer dipole moments larger
by up to two orders of magnitude and can achieve significantly stronger dipolar interactions,
but come at the cost of short lifetime of samples (as experiments are performed on metastable
states) and typically require more complex apparatus.

1.2 Properties of Erbium

Erbium is a metallic element from the lanthanides section of the periodic table, and is also
classified as a rare-earth element. It was discovered in a sample of gadolinite ore by Carl
Gustav Mosander in 1843 [54]. Its name (along with the names of terbium, ytterbium and
yttrium) is derived from the mine where the ore originated - Ytterby. By appearance, erbium
is a pale, silvery metallic substance, that easily oxidises and hence usually covers itself with
a layer of oxide when exposed to air. It has the atomic number of Z = 68, and the average
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atomic mass of A = 167.26 amu. It naturally occurs in six stable isotopes, five of them
bosonic, as shown in the Table 1.1. Its uses range from being a dopant element in solid state
and optical-fibre laser active media, to manufacturing coloured glasses and high heat capacity
alloys for usage in cryo-technology.

In the scope of the ultracold atomic physics, erbium is interesting for its large magnetic
dipole moment and electronic level structure favourable for laser cooling and accessibility of
both bosonic and fermionic isotopes. This makes it handy for implementing standard cooling
and trapping methods for reaching low temperatures and quantum degeneracy, and then
exploring the phenomena in many-body quantum mechanics with dipole-dipole interactions.

1.2.1 Electronic Configuration and Transitions

The electronic configuration of erbium is [Xe]6s24 f 12, exemplifying the case of a submerged
shell configuration, where the valence electrons populate a filled 6s orbital while a 4 f sub-
shell remains partially filled. This configuration is the primary reason for the high magnetic
moment of erbium, where the two holes in the 4 f sub-shell contribute to the total angular
momentum of J = 6 in the ground state.

Transition Blue Yellow

Wavelength 400.97 nm 582.84 nm

Natural Linewidth 29.7 MHz 190 kHz

Doppler Temperature 714µK 4.6µK

Recoil velocity 6.0 mm
s 4.1 mm

s

Saturation Intensity 60.3 mW
cm2 0.13 mW

cm2

Table 1.2 Laser Cooling Atomic Transitions

The complicated electronic structure is also reflected in the very rich spectrum of elec-
tronic excited states (Figure 1.2). Looking at the electronic-dipole-allowed transitions from
the ground state, several transitions of interest for laser cooling may be identified [57], cover-
ing a range of line widths, from wide (30 MHz) to ultra-narrow (2 Hz). An important criterion
for a level to be directly suitable for laser cooling is a small branching ratio, enabling the
cooling scheme to be set up on a two-level subsystem. Two transitions of particular interest
for our experiment are the ones at 401 nm and 583 nm with linewidths of 29.7 MHz and
190 kHz respectively. These two transitions are highlighted in Figure 1.2 and their properties
are shown in Table 1.2. The 401 nm transition is the most prominent transition in erbium,
making it very convenient for initial stages of laser cooling as it provides a large photon
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Fig. 1.2 Electronic Orbitals of Erbium - Energy levels of erbium arranged by orbital quantum
number J. Even (odd) parity levels are indicated in (red) blue. The two transitions that we employ for
laser cooling, at 401 nm and 583 nm are highlighted. Spectroscopic data obtained from [55, 56].

scattering rate. In parallel, it has the leading order influence on the atomic polarizability,
which is relevant for optical trapping (as discussed in Chapter 5). The yellow transition, at
583 nm, being reasonably narrow, is well suited for the magneto-optical trap, giving a very
low Doppler temperature of approximately five microkelvin.
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1.2.2 Magnetic Properties

Elements with the largest magnetic moments can be found among the lanthanides. Dys-
prosium and terbium lead the charts with µ = 10µB, followed by holmium, europium and
erbium with 8µB, 7µB and 7µB respectively ( µB = eℏ

2me
is the Bohr magneton). As mentioned

in the previous subsection, erbium owes its magnetic moment to the two holes in the 4 f
sub-shell. The appropriate spin-orbit coupling scheme for this submerged shell configuration
is a special type of jj-coupling, called J1J2-coupling. In this picture, LS-coupling is assumed
to separately couple the angular momenta of the submerged 4 f shell holes and the angular
momenta of the outer valence electrons, yielding J1 and J2, that are subsequently coupled
together. In the ground state, the two valence 6s electrons are in the L = 0 and S = 0 state,
and the 4 f electrons give an overall 3H6 state with L = 5, S = 1 and J = 6, which also
corresponds to the final coupled state. The Landé g-factor for this state can be theoretically
calculated as:

gJ = 1+(gS−1)
J (J+1)−L(L+1)+S (S+1)

2J (J+1)
= 1.1670533 (1.1)

where gS ≈ 2.00232 is the gyromagnetic ratio of the electron [58]. This formula does not
include several known corrections, that would otherwise yield a value much closer to the
actual, experimentally measured value of gJ = 1.163801(1) [55, 56]. Knowing the Landé
g-factor it is possible to calculate the magnetic moment of the given fine structure state, given
by the value of mJ:

µ = mJgJµB . (1.2)

From here, we see that the total magnetic moment of an erbium atom in its ground state is
µ (mJ = 6) = 6.982806(6)µB.

The two excited states corresponding to the optical transitions used in the experiment,
both having J = 7, are:

• 401 nm excited state: [Xe]4 f 12 (3H6
)

6s6p
(1P1

)
(6,1)7

• 583 nm excited state: [Xe]4 f 12 (3H6
)

6s6p
(3P1

)
(6,1)7

with the Landé g-factors of gJ = 1.160 and gJ = 1.195 respectively [55, 56]. These values
are important as the Zeeman shift of a given transition

∣∣Jg,mg
〉
→ |Je,me⟩ induced by the

magnetic field B is calculated according to:

∆EZeeman = (mege−mggg)µBB . (1.3)



8 Introduction

1.2.3 Scattering Properties

Typical densities encountered in ultracold atomic clouds are on the order of n∼ 1020 m−3,
corresponding to an average inter-particle distance of d ∼ n−

1
3 ∼ 200 nm [59, 60]. As it will

be justified below, the representative length scales associated with the scattering processes
are on the order of 102× a0 ≈ 5 nm≪ d, a0 being the Bohr radius, placing the system
in the regime where scattering can be described accurately by only considering two-body
encounters. Furthermore, at ultracold temperatures and for a gas spin polarised in the |6,−6⟩
ground state, 2-body inelastic collision processes are generally frozen-out1.

Interactions and scattering processes in a dipolar gas are governed both by the dipolar
and the van der Waals potential:

U(r) =UvdW(r)+Udd(r) . (1.4)

The potential energy originating from dipole-dipole interactions (DDI), directed along unit
vectors e1 and e2, and separated in space by r is given by:

Udd (r) =
Cdd

4π

(e1 · e2)r2−3(e1 · r)(e2 · r)
r5 (1.5)

where for magnetic dipoles, Cdd = µ0µ2. In the case of a polarised gas, with dipoles aligned
with the z-axis, this simplifies to:

Udd (r) =
Cdd

4π

1−3cos2 θ

r3 (1.6)

with θ being the angle between r and the polarisation axis. The anisotropy of the DDI force
is shown graphically in Figure 1.3, demonstrating how the interactions can be either repulsive
or attractive depending on the positioning of the atoms.

The situation with the dispersion potential describing the van der Waals interactions is a
bit more involved, due to the complicated electronic structure of erbium. Since the ground
state electronic configuration includes two holes in the f subshell, the dispersion potential is
anisotropic, reflecting the lack of spherical symmetry of the electronic density distribution,
and cannot be represented with in the simple form UvdW(r) = −C6

r6 . Consequentially, the
dispersion potential is described by a spread of C6 coefficients, representing couplings
between different pairs of total angular momentum eigenstates, quantified by ∆C6, which for
erbium take the values of C6 = 1723 a.u. and ∆C6 ∼ 350 a.u. [61]. While this anisotropy has
profound consequences on the spectrum of Feshbach resonances, due to the rotational barrier

1The Zeeman splitting in a B = 1 G bias field corresponds to a temperature of T = gJ µBB
kB
≈ 80µK
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Fig. 1.3 Dipole-Dipole Interaction - a) The anisotropic profile of the interaction potential for a pair
of parallel dipoles. The potential changes sign at the angle of 54.7°, between being attractive for
‘head-to-tail’ dipoles and repulsive for ‘side-by-side’ dipoles - also shown in b).

for ultracold collisions, it still only amounts to s-wave scattering, and can be represented by
a hard-core pseudo potential and a unique scattering length [57, 62].

Even with the dipolar force taken into account, the pseudo potential formalism can still
be employed, but with two modifications. The first is the obvious addition of the anisotropic
term from Equation 1.6, and the second is a modification to the s-wave scattering length by a
hard-sphere contribution of the DDI:

aeff
s =

√
a2

s −
4
5

a2
D (1.7)

where aD = mrµ0µ2

12πℏ2 and mr is the reduced mass of two colliding dipoles [57]. Therefore, in a
gas of polarized dipolar atoms, the full pseudo potential with dipolar interactions included
can be written as:

Vint (r) =
4πℏ2

m

(
aeff

s δ (r)+
3

4π
add

1−3cos2 θ

r3

)
(1.8)

with the introduction of DDI length scale, add =
mµ0µ2

12πℏ2 [33]. This length scale is used to
compare the relative importance of the contact interactions and dipole-dipole interactions,
through the definition of the dipolar character2:

εdd =
add

as
. (1.9)

2From here on we drop the ‘eff’ superscript from aeff
s .
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Fig. 1.4 Feshbach Resonances in 166Er and 168Er - Evaluated using data on positions and widths of
resonances and estimates on the background scattering length (assumed constant across the interval of
fields) from [57, 29] for the two most abundant isotopes - 166Er (a) and 168Er (b) and fields up to 8 G.
Due to a large uncertainty in the background scattering length, these plots offer only approximate
values of scattering length, but describe the general structure of the Feshbach spectrum.

The effective s-wave scattering length can be controlled via the Feshbach resonances, by
tuning the background magnetic field. The variation in the vicinity of a resonance of width
∆B located at the field value B0 can be represented by [6]:

as = abg

(
1− ∆B

B−B0

)
. (1.10)

The anisotropic nature of the van der Waals potential, that has the ability to couple
the electronic degrees of freedom of the two colliding atoms, with the molecular rotation
of the bound states. This enables a large number of coupling channels that contribute to
Feshbach resonances resulting in a dense spectrum. Figure 1.4 shows the resonances for
166Er and 168Er , up to the field of 8 G. Unlike most of the species used in ultracold atom
experiments, the Feshbach spectrum of erbium is very rich even in such a narrow field
interval. Experimental measurements have been performed up to much higher fields, and the
density of ∼ 3 resonances per gauss was observed for both mentioned isotopes [57, 29] .
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1.3 Bose Gas with Dipolar Interactions

Our planned experimental effort focuses on work with the bosonic isotopes of erbium. A
Bose gas, cooled down sufficiently (typically to several 10s or few 100s of nK), will undergo
a phase transition to the BEC. This state is characterised by the macroscopic population
of the ground state. Under such conditions, a simple picture that describes the gas can be
constructed using the notion of the condensate wave function and small excitations on top of
the ground state. This provides a basis for theoretically exploring the influence of interactions
and trapping geometry onto the behaviour of the system.

1.3.1 Gross-Pitaevskii Equation

Assuming a dilute bosonic gas with two-body elastic collisions only and a population of N
atoms, the evolution of the system is described by the Heisenberg equation applied to the
field operator Ψ̂(r, t) in the scope of second-quantisation [63]:

iℏ
∂

∂ t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
=

[
− ℏ2∇2

2m
+Vtrap(r)

+N
∫

Ψ̂
†(r′, t

)
Vint
(
r′− r

)
Ψ̂
(
r′, t
)
dr′
]

Ψ̂(r, t) . (1.11)

The field operator can be represented in terms of a collection of single particle states and the
associated ladder operators:

Ψ̂(r) = Ψ0(r, t)â0 + ∑
n̸=0

ψn(r, t)ân . (1.12)

When the gas is condensed, the majority of the atomic population resides in the lowest lying
state Ψ0, so the non-commutativity of operators â0 and â†

0 can be neglected3 and both â0

and â†
0 can be safely substituted by a c-number

√
N0. If additionally the occupations of the

excited states ψn are altogether neglected, this yields the Gross-Pitaevskii equation (GPE)

3The commutation relation for the bosonic ladder operators specifies
[
â0, â

†
0

]
= â0â†

0− â†
0â0 = 1, while

both â0â†
0 and â†

0â0 are of order N0≫ 1



12 Introduction

for the condensate wave function in the mean field approximation:

iℏ
∂

∂ t
Ψ0(r, t) =

[
− ℏ2∇2

2m
+Vtrap(r)

+
∫

Ψ
†
0
(
r′, t
)
Vint
(
r′− r

)
Ψ0
(
r′, t
)
dr′
]

Ψ0(r, t) (1.13)

where a factor of
√

N is now absorbed into the condensate wave function (Ψnew
0 =

√
NΨold

0 )
for it to account for N ≈ N0 particles. In the case of a time-independent Hamiltonian,
a stationary state can be found in the form Ψ0(r, t) = exp(−iµt)Ψ0(r), where µ is the
chemical potential of the gas. Similarly, given the condensate wave function, the energy of
the system is calculated as:

E[Ψ0] =
∫ [ ℏ2

2m
|∇Ψ0(r)|2 +Vtrap(r)|Ψ0(r)|2

+
1
2

∫
Vint(r− r′)|Ψ0(r′)|2|Ψ0(r)|2dr′

]
dr . (1.14)

1.3.2 Excitations and Roton Minimum

The GPE only describes the static properties of the condensate. Staying within the mean field
picture, but allowing for small occupation probability of the excited states, i.e. writing the
equation 1.12 as:

Ψ̂(r) =
√

N0Ψ0(r)+η δψ(r, t) (1.15)

for η ≪ 1 constitutes the Bogoliubov approximation [63, 64]. This approach is used to
predict excitation modes at low temperatures and it proceeds by defining a trial perturbation
wave function in the form:

δψ(r, t) = u(r)e−iωt + v∗(r)eiωt (1.16)

with an accompanying normalisation rule:
∫ (
|u(r)|2−|v(r)|2

)
dr = 1 . (1.17)

If the ansatz from Equation 1.15 together with Equation 1.16 is plugged into the Heisenberg
equation for the evolution of the system, keeping only terms up to O(η), a set of coupled
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equations for the excitation modes is obtained:

(
HGP [Ψ0]+ X̂ X̂
−X̂ −HGP [Ψ0]− X̂

)(
u
v

)
= ℏω

(
u
v

)
(1.18)

with X̂ being the exchange energy operator, which takes the form:

X̂χ(r) =
∫

Ψ0
(
r′
)
Vint
(
r′− r

)
χ
(
r′
)
dr′Ψ∗0(r) . (1.19)

In the case of the dipolar gas, the simplest, but still very informative result, that can be
obtained using this approach, is the excitation spectrum of the homogeneous dipolar gas. If
the condensate wavefunction is uniform and fills up all of space, it can be simply written as
Ψ0 =

√
n0. The solution to the Bogoliubov equations gives the excitation spectrum [63]:

ω(k) =

√
ℏ2k2

4m2

(
k2 +

4mn0g
ℏ2 (1+ εdd (cos2 θk−1))

)
(1.20)

with cosθk = kz
k and g = 4πℏ2as

m . This equation leads to an interesting observation that the
bulk dipolar gas will be unstable for εdd ≤ 1.

In a slightly more complicated setting of a planar-infinite system with harmonic trapping
along the z-axis, applying the Bogoliubov theory reveals the roton feature in the excitation
spectrum [65]. In this case the gas is assumed to be confined by the trapping potential
Vtrap =

mω2
z z2

2 and that the cloud density is sufficiently high such that the Thomas-Fermi
(TF) approximation applies (µ ≫ ℏωz), where µ is the chemical potential. In this case, the
condensate ground state is described by the TF profile in the z-direction and is otherwise
uniform in the xy-plane, i.e. Ψ0(z) = n0(1− z2

L2 ) with L =
√

2µ

mω2
z
. The spectrum that is

obtained after solving the Bogoliubov equations for kL≫ 1 takes the form:

ω = ωz

√
k4l4

z

4
+

2(1− εdd)(5εdd +1)
3(2εdd +1)(4εdd +1)

µ

ℏωz

k2l2
z

2
+1 (1.21)

where lz =
√

ℏ
mωz

. The dispersion relation for kL≪ 1 can be similarly calculated to be:

ω = ωz

√
2µ

3ℏωz
klz . (1.22)

Figure 1.5a shows an example spectrum obtained from this model, demonstrating the
emergence of the roton feature for εdd > 1. The softening of the excitation spectrum at
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Fig. 1.5 Roton Minimum - a) The excitation spectrum of dipolar gas harmonically trapped in an
infinite plane, modelled by the Equations 1.21 and 1.22 in the short and long wavelength limits for
µ = 50×ℏωz. The dotted lines serve as guides to the eye connecting the spectra across the interval
where the models do not apply. The spectrum for εdd = 1.075 contains the roton minimum whereas
the εdd = 0.95 line is monotonically increasing. b) A cartoon showing the effect of the short and long
wavelength excitations on the density distribution (exaggerated) rationalising the reduction of the DDI
energy at intermediate wave numbers due to the increased contribution of the attractive component of
the force from the dipoles aligned roughly ‘head-to-tail’.

intermediate wave numbers can be rationalised by looking at the geometry of the density
perturbations (see the cartoon in Figure 1.5b). The medium wavelength excitations (klz ≳ 1)
lead to perturbations that make the atoms more likely to be aligned ‘head-to-tail’, involving
excursions into the attractive domain of the DDI force. This is not the case for long wave-
length oscillations (klz≪ 1) where the atoms mostly feel the repulsive part of the dipole force.
Finally, at very short wavelengths (klz≫ 1) the kinetic term eventually overshadows the
other components making the dispersion relation to tend towards the free particle dispersion
(ω ∝ k2). Therefore, the negative contribution from the DDI potential at intermediate wave
numbers causes the overall energy to drop, creating the roton minimum.
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1.4 Project Goals

One of the key messages the opening section aims to relate is the significance of ultracold
atomic systems for the subject of quantum simulation and the key role of their versatility
for such a qualification. Our vision is to combine the novel techniques of trapping atoms in
uniform potentials with the long range and anisotropic nature of the dipole-dipole interactions
provided by magnetic atoms to create a platform for exploring various aspects of many body
physics. The design we are going for will enable us to tune the geometry of the optical box
trap, as well as the strength and nature of the interactions.

A flattened BEC with sufficiently strong dipolar interactions exhibits a roton-like excita-
tion spectrum [35, 36, 65] and will allow us to investigate the implications of these excitations
on the behaviour of the gas, including its superfluid properties. Crucially, in such a system,
both angular roton modes and vortices can be excited, enriching the accessible physics. A
further consequence of the roton feature in the excitation spectrum is the dynamical instability
it can induce and the supersolid phase [40–42], stabilised by quantum fluctuations, that can
form as a result. We also plan to look closely at the properties and dynamics of this phase
transition as well as the impact of the dipole-dipole interactions on the conventional phase
transition to BEC. This is intended as an extension of the application of the Kibble-Zurek
theory on ultracold atomic systems [23, 24]. As both the BEC phase transition and the
formation of the supersolid are processes sensitive to atomic density, we consider the uniform
trapping potential to be an important requirement for studying these processes in depth.

Following the addition of potassium as the second atomic species to the experiment,
introducing impurities to the system will be another possibility for setting up experiments.
Currently, we aim to investigate Bose polaron physics [66] and qubit decoherence in non-
Markovian systems [67, 68].

Further details about the project plans are provided in Chapter 7.

1.5 Overview of the Experiment

There are several steps in the experimental sequence required to produce a quantum-
degenerate gas of atomic erbium in the box trap. A brief summary of these steps, which
have been the basis of our experimental design, is presented here with the aid of Figure 1.6.
Due to high temperatures needed to achieve significant vapour pressure levels of erbium,
atoms are sourced from an effusion cell oven typically operating at 1100 ◦C. It produces a
collimated beam of hot atoms that are first subjected to 2D molasses cooling in the transversal
directions (Transversal Cooling - TC), and then slowed down using a Zeeman Slower (ZS).
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Fig. 1.6 Achieving Box-Trapped
BEC - Outline of the cooling and
trapping methods leading towards an
erbium BEC trapped in an optical Box
Trap: a) Zeeman Slower (ZS) slows
the atoms emerging from the oven
with velocities below a certain capture
velocity. Total flux of slow atoms
is enhanced with a 2D transversal
Doppler cooling (TC); b) Narrow line
Magneto Optical Trap (MOT) is loaded
from the atomic beam with atoms
slowed by the ZS. Low temperatures
(∼ 10µK) are obtained by ramping
the trap into the compressed MOT
trap (cMOT), which also creates better
overlap with the optical trap during
subsequent transfer into the Optical
Dipole Trap (ODT); c). The ODT is
formed using a high power 1030 nm
laser that is projected onto the atoms
using an optical system incorporating
a pair of focus-tunable lenses, and
creates an attractive potential for the
atoms. The focus of the trap can
be translated across the length of
40 cm between the two experimental
chambers. Also, prior to transport,
evaporative cooling can be performed
in a crossed optical dipole trap, created
with an additional beam; d) Upon
transport, the atoms will be transferred
into the box trap that is made up
from a hollow, tubular repulsive
beam (372 nm) and a highly flattened
elliptical sheet beam (1030 nm). This
creates a trap with a high aspect ratio
and a homogeneous in-plane trapping
potential.
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This technique targets atoms up to the capture velocity that typically lies at ∼ 350 m
s in the

case of our setup, and slows them down to < 10 m
s . These initial stages of cooling employ

the broad 401nm atomic transition.
The slow atoms are loaded into the narrow-line Magneto-Optical Trap (MOT), operating

on the 583nm transition, where further Doppler cooling reduces the temperature to ∼ 10µK
and the atomic cloud is simultaneously compressed, preparing it for transfer into the Optical
Dipole Trap (ODT). We use a high power 1030 nm laser to form an attractive, non-resonant
optical trap. The main ODT beam (ODT 1) is projected using a setup incorporating focus
tunable lenses, allowing the trapping potential well, that is formed in the focus of the beam,
to be translated along the propagation direction. This technique is to be used to transport
the atoms from the MOT chamber into the glass science cell where the box trap will be
implemented. Prior to transport, an additional trapping beam (ODT 2) is overlaid with the
main beam, to enhance the axial confinement of the trap in order to perform evaporative
cooling. Finally, upon transport, the atoms will be transferred into the box trap, that is formed
by a combination of a repulsive, hollow cylindrical beam trapping the atoms in the horizontal
direction, and an attractive sheet beam for vertical confinement. The repulsive potential is
provided by a 372nm laser, that is blue-detuned w.r.t. the dominant atomic transition.

Fig. 1.7 Vacuum System Design - The vacuum chamber geometry we opted for consists of three
distinct parts. The HV Section houses the erbium oven and viewports for transversal cooling and
probing of the atomic beam. It is separated from the remainder of the system with a low conductance
section to prevent the potentially high outgassing rate originating from the oven section having an
impact to the pressure in regions where the atom clouds will be created and cooled. The MOT chamber
is the central merging point of all the sections of the experiment, and the place where the main cooling
steps will take place (MOT and evaporative cooling). As it consequentially lacks optical access for
the box trap and measurement apparatus, we transport the atoms into an all glass chamber, referred to
as the ‘science cell’. There, the box trap will be implemented, along with high-resolution imaging and
probing and manipulation optical beams.
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We have opted for a ‘three chamber’ layout in the design of our vacuum system that
will accommodate all of the above (Figure 1.7). The reasoning for such a decision mainly
revolves around separating the erbium oven section from the rest of the system using a
low-conductance tube that can support a large pressure differential and would protect the
‘science’ section from potentially high outgassing rate originating from the heated parts of
the oven. The second factor was the issue of optical access for probing and manipulation of
the atoms, which led us to incorporate a transparent glass cell that will be the location of the
box trap and all the experiments involving the gas trapped in it. In this configuration, after
the initial stages of cooling are performed in the MOT chamber, the gas will be optically
transported to the glass cell.
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1.6 Contributions and Thesis Outline

The structure of the remainder of the thesis is outlined here, highlighting any collaborative
work and contributions from colleagues from subject to subject:

• Chapter 2 describes the vacuum system in the core of the experiment, from the design
process to reaching the desired vacuum levels. A significant contribution to the work
outlined there is the design of the magnetic field coils by Nathaniel Vilas.

• Chapters 3 & 4 focus on the laser cooling methods applied to the oven generated
atomic beam - transversal cooling and the Zeeman slower, and the subsequent narrow-
linewidth magneto-optical trap, respectively. The setting up of the apparatus and a
large fraction of performed measurements were done in collaboration with Dr Anna
Marchant, with contributions from Nathaniel Vilas in the early stages of designing
the laser systems. The data acquisition, storage and analysis software was written and
maintained by Lucas Hofer, also resulting in a technical publication presented with
this thesis in Appendix E.

• Chapter 5 deals with optical trapping, transport and probing of the atoms. The design
of the optical systems responsible for evaporative cooling and transport of the cloud
into the ‘science’ chamber of the system, its confinement into the optical-box trap
and the Bragg spectroscopy technique for recording the excitation spectrum are laid
out there. The design of the trapping and transport setup was done by Péter Juhász,
prototyping of the Bragg spectroscopy setup was a collaborative effort with Gloria
Clausen, while the planning and prototyping of the optical box potential setup was
done together with Lucas Hofer, Dr Anna Marchant and Daniel Ruttley.

• Chapter 6 offers a look into a numerical simulation that explores the dependence of
the stability and ground state properties of a trapped dipolar BEC on the confining
geometry and strength of interactions. This was a joint effort with Péter Juhász, with
contributions from David Strachan and Edward Gandar.

• Chapter 7 discusses the progress achieved so far and covers the future projects planned
on the experimental platform, including exploring roton physics, dynamics of phase
transitions and dual species experiments with potassium atoms.



Chapter 2

Vacuum Chamber Design and
Construction

This chapter discusses the design considerations for our vacuum chamber and presents an
overview of its assembly and commissioning. The main design goals that guided this process
are:

• Ultra-High Vacuum (UHV) conditions in the ‘science’ section of the experiment, with
pressures below 10−11 mbar to ensure long atomic cloud lifetimes.

• High degree of optical access for the laser cooling and trapping methods to go from
the atomic beam exiting the oven to an ultracold atomic cloud in the box potential, and
to accommodate probing and measurement beams for future experiments.

• High stability and controllability of magnetic fields in and around the chamber. This
includes the fields required for the Zeeman slower and the magneto-optical trap, bias
fields for maintaining spin polarisation and tuning the interactions, and the ability to
compensate any background fields and actively stabilise the field in the critical regions
to milligauss levels.

• Sufficient flux in the atomic beam emerging from the erbium oven, leading to quick
and efficient loading of the MOT to atom numbers of ∼ 108 within several seconds.

In addition, we plan to add potassium as a second atomic species to the experiment, so
space was designated to make that possible.



2.1 Design Considerations 21

2.1 Design Considerations

The final design solution we converged to is a ‘three-chamber’ system consisting of the High
Vacuum (HV) section mounting the erbium oven as the source of atoms, the MOT chamber,
housing the majority of the laser cooling methods, and the glass science cell that, given
the degree of optical access it offers, provides the versatility required for the multitude of
future projects on this platform. The latter two regions need to be maintained at ultra-high
vacuum conditions in order to achieve long atomic cloud lifetimes required for performing
measurements. Hence, we often refer to these two sections together as the Ultra-High
Vacuum (UHV) section. The HV and UHV sections are separated by a low conductance tube
that simultaneously carries the Zeeman Slower (ZS) coils. The diagram showing details of
this design is shown in Figure 2.1.

Fig. 2.1 Vacuum Chamber Layout - Top view of the vacuum system. The High Vacuum section
(HV) consists of the effusion cell erbium oven, the cube with transversal cooling viewports (TC), the
cross with optical access for atomic beam characterisation (BC) and connecting the vacuum pump.
The Zeeman slower tube carries the magnetic field coils for the simultaneous laser cooling application
and also maintains the pressure differential towards the Ultra-High Vacuum (UHV) section of the
chamber. The latter consists of the MOT chamber, glass science cell for performing experiments, and
connections for the ZS beam delivery system, the residual gas analyser (RGA) and the port for the
future extension of the chamber (potassium 2D MOT).

The design process called for a series of calculations and simulations to aid and support
decisions. Firstly, the atomic beam emerging from the effusion cell oven was modelled in a
Monte Carlo simulation to gain better understanding of its propagation and the implications
towards the chamber geometry and laser cooling methods. In parallel with that, we investi-
gated the performance of different candidate solutions for the system of vacuum pumps, in
terms of type, number and placement within the chamber. The model we used assumes the
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molecular flow regime, and estimates ultimate pressure levels in different locations in the
system taking into account the pumping speeds of vacuum pumps, background gas sources
and chamber section conductances. Armed with experience gained from the results of these
calculations, we created a blueprint of the chamber, also drawing inspiration from existing
experiments of similar type [57, 62].

2.1.1 Modelling Pumping and Pressures

We decided to use the combined NEG1-Ion pump elements in our system to reach the
desired vacuum levels. This was motivated by the fact that this technology has the ability to
pump all types of gases typically present in vacuum chambers, and is especially efficient in
pumping molecular hydrogen gas, that is the dominant background component in stainless
steel chambers. Although this significantly narrows down the options for pumps, the decision
on the number of pumps and their pumping speeds and positioning still had to be made.
Additionally, as our system incorporates an effusion cell oven2 that requires very high
temperatures3, above 1000◦C, to generate an atomic beam with sufficient flux, we were
concerned about the potentially high outgassing rates it would produce. Consequently, a
low conductance section between the oven and the ‘science’ region of the experiment, that
can support a pressure differential of at least two orders of magnitude, was set as one of the
design goals.

The molecular flow model that we used in the calculations is presented in Appendix A,
together with the justification of the assumptions made and the parameters used. As shown in
Figure 2.2, the chamber is divided into 10 regions, and the molecular conductances, Ci j are
estimated between all connected regions. Vacuum pumps are represented by their pumping
speeds, Si, whereas the background gas source terms, Qi, are estimated based on assumptions
about outgassing, permeation and leaks. As demonstrated in Appendix A, this allows us to
draw an equivalent electrical circuit, where pressure levels correspond to voltages, and by
solving it, obtain estimates for the equilibrium pressure values in different sections.

The design we ultimately converged to incorporates three vacuum pumps4 - one 100 L
s

pump is mounted on the HV side, next to the start of the ZS tube, whereas on the UHV
side, a 300 L

s pump is mounted on a large, DN63CF reducer cross adjacent to the MOT
chamber, and another 100 L

s pump sits on the cross between the MOT chamber and the glass
cell5. The locations of the pumps correspond to regions labelled 2, 6 and 9 in the drawing,

1Non-Evaporable Getter
2See Section 2.1.2 for technical details about the effusion cell oven.
3For reference, the melting point of erbium is 1529◦C
4The quoted pumping speeds are for H2. Specifications for other relevant species are given in Appendix A.
52 × Nextorr D 100-5 and Nextorr D 300-5 from SAES Getters
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Fig. 2.2 Molecular Flow Model - A simplified representation of the vacuum system used to estimate
pressures in different regions as a result of pumping. The model covers several gaseous components,
and accounts for leaks, outgassing of hydrogen from chamber walls and permeation of helium through
glass. The source input rates, Qi, are calculated for each section based on geometry, number of
connections and materials involved. The molecular conductances of different sections, Ci j, are also
deduced from the geometry and the appropriate pumping speeds S2, S6 and S9 are assigned to the
nodes housing the vacuum pumps.

respectively. The inner diameter of the ZS tube, that is used to maintain a pressure differential,
is 8mm, yielding a conductance of 0.41 L

s for molecular hydrogen at room temperature. The
pressure estimates obtained for this configuration are P3 = 3×10−11 mbar in the HV section,
P5 = 3×10−11 mbar in the MOT chamber and P8 = 1×10−11 mbar in the science cell.

The above model does not account for any extra outgassing from the oven section, save
for the usual contribution from the flange connection leaks and hydrogen gas desorption
from the exposed stainless steel tubing6 around the oven. This is due to an uncertainty
of how to model different outgassing sources present in that case. The oven is made of
a number of materials, including tantalum, ceramics and steel, and it also goes through
regular temperature changes between the stand-by temperature of 700◦C and the working
temperature of ≥ 1100◦C. Instead, we approached the problem by querying the model
for the equilibrium pressures in cases when the oven outgassing rate for hydrogen is set
to progressively higher values (Figure 2.3). This test shows that going to narrower tube
diameters than 8mm does not bring much immediate advantage except in the case of extreme
outgassing in the oven region, whereas larger diameters would visibly reduce the degree of
protection provided by the differential pumping tube. As the chamber pressures are only

6The chamber encompassing the oven only heats up mildly, by several tens of degrees, when the oven is at
the working temperature
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Fig. 2.3 Differential Pumping - Pressure estimate in the MOT chamber (a) and the science cell (b) for
different outgassing rates in the oven section (set to multiples of Qss = 5×10−10mbar L s−1, which
represents the outgassing rate stainless steel at room temperature). The dotted lines in a) represent fits
of the function PMOT = P(0)

MOT +AQ0D3
ZS (with a unique value of A = 1.4×10−4s), demonstrating the

simple inverse scaling of the maximum achievable pressure differential with the tube conductance.

one of the factors relevant for this decision, it will be revisited in the next subsection from
the perspective of the atomic beam flux. It is also worth noting that it is not only the oven
outgassing that we will be protected against, but also the potential ramifications of the fact
that this section of the chamber will have to be opened for maintenance (primarily for oven
refilling). This will inevitably lead to a decrease in the NEG pump efficiency upon the
exposure of an activated element to air and moisture, as well as increased surface desorption
should the full bakeout of this section turn out to be impossible, e.g. due to equipment that is
now in place nearby.

Two other major decisions that were aided by the molecular flow calculations concern
the vacuum pumps in the UHV section. As the atoms should eventually be transported
between the MOT chamber and the science cell, installing a cross with an additional pump
along this path renders this task more difficult. On the other hand, the science cell is the
region of the chamber where we wish for the lowest possible pressure. As the simulation
estimates a fourfold increase in pressure in the science cell in the case without the pump,
we deemed that installing it is worthwhile, even at the cost of more challenging optical
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transport. Related to that, it was debated whether the pump in the cross next to the MOT
chamber (position 6) should be the same as the other two, or a stronger model. Given that
the molecular conductance between the cross and the MOT chamber is C56 = 100 L

s (30 L
s )

for H2 (N2), a pump with pumping speeds of 300 L
s (100 L

s ) would perform significantly
better than the weaker 100 L

s model. This is corroborated by the estimates obtained from the
calculation that predict that the MOT chamber pressure would equilibrate at a 40% higher
value if the latter pump option was used.

The ultimate measure of success of this feat would be a BEC lifetime sufficiently longer
than the period of one experimental cycle (∼ 10 s). Although we have not been able to check
this directly yet, there are positive indications that make us believe that we are on track to
achieve this goal. Ever since the chamber was pumped down to vacuum and heat-treated in
the bakeout process, the ion pump pressure gauges on all three pumps maintained a reading
below their detection level of 1×10−10 mbar. Additionally, a more convincing and direct
confirmation was the lifetime of the atomic cloud in the MOT that was measured to be in the
range of 30−50 s with strong indications it is limited by light-assisted molecule-forming
collisions rather than the background gas pressure (see Subsection 4.4.3).

2.1.2 Effusion Cell and the Atomic Beam

The effusion cell oven7 consists of a tantalum crucible8, housing the solid erbium material,
that is heated to high temperatures to increase the vapour pressure, and has a system of
two heated apertures that produce a collimated atomic beam. The geometry of the oven
assembly with detailed dimensions is given in Figure 2.4. The region of the crucible with
the second aperture, the ‘hot lip’, can have its temperature independently controlled by a
separate heater filament, and primarily serves the purpose of limiting the flux of divergent
atoms and preventing material build-up on the second aperture. The third aperture, in the
form of a bored copper gasket, is installed at the first flange connection after the oven to
block the most divergent atoms. This oven and aperture geometry was also used in [57]. A
shutter, operated via a mechanical feed-through, can be used to block the atomic beam in
front of the exit aperture of the oven. In our design, the oven is mounted to a port aligner,
that would allow any tilt of the oven to be corrected, followed by a cubic chamber with
viewports for transversal cooling (TC). It is further followed by a 6-way cross, connecting
the vacuum pump9 and the rough pumping port, and also carrying three auxiliary viewports

7Dual Filament Cell, model DFC-40-10-WK-2B-SHE, from Createc
8Melting point of tantalum is 3017 ◦C
9Nextorr D 100-5
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Fig. 2.4 Effusion Cell Oven Geometry - A set of three apertures, two of them integrated into the
oven and thereby heated, are used to produce a collimated atomic beam. The first aperture, leading
from the effusion cell where the solid erbium is evaporated, has tubular geometry with Dap1 = 3mm
and Lap1 = 30mm. The hot lip section of length Lhl = 50mm mounts the second aperture, with
Dap2 = 3mm, that collects the highly divergent atoms, and is kept at a further elevated temperature
to prevent material accumulation. Finally, a third aperture, in the form of a copper gasket with a
Dap3 = 8mm bored hole, is mounted in front of the oven, Lap3 = 33mm from the exit aperture of the
hot lip. This aperture stops the atoms with no chance of reaching the MOT chamber, that make up
about 96% of the total flux.

for spectroscopy and measurements on the atomic beam. Finally, the path of the atomic beam
proceeds through the ZS tube into the MOT chamber.

The oven requires water cooling to prevent excessive heating of the surrounding chamber
and enhance the responsiveness of the temperature control loop. The cooling water is supplied
via a closed loop system built around a commercial central heating water pump and also
incorporates a secondary loop with an additional pump activated via an interlock circuit as a
fail-safe.

I wrote a numeric simulation that models the atomic beam emerging from the oven and
propagating towards the MOT chamber. The assumptions and physical considerations that
feed into this simulation are presented in Appendix B. This program was used to gain a better
understanding of the flux profile of the atomic beam and its implications towards the design
of the laser cooling methods and chamber geometry. The centrepiece of the simulation is
a molecular flow model of the effusion cell oven that creates a Monte Carlo sample of the
emerging atoms and calculates the associated flux. In the work presented here, we use a set
of five samples containing 2×106 atoms each, generated at effusion cell temperatures in the
Tec = 1000−1200 ◦C range. The model assumes that the vapour pressure in the cell is given
by the Antoine equation10 [57, 69]:

pvap (Tec) = 10A− B
C+Tec mbar (2.1)

which is then used to seed the sample atoms and normalise the calculated fluxes.

10The empirical coefficients for erbium are AEr = 7.103(4), BEr = 12170(20) K and CEr =−173(2) K.
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Fig. 2.5 Effusion Cell Oven Flux - The estimates of the atomic flux (a) and material lifetime (b) at
different temperatures (with constraint Thl = Tec +100 ◦C) for the oven design with the effusion cell
exit aperture (AP1) being tubular (used in the experiment) and the alternative design with a simple,
circular aperture. a) shows the atomic flux at the oven output, after the gasket-aperture (Ap3) and in
the MOT chamber. Two sets of flux data from beam fluorescence measurements is shown with square
markers, dating back to April 2019 and October 2020. Note that the older data set was measured with
Thl fixed at T = 1200 ◦C, explaining the smaller slope. Flux values shown are for the natural mixture
of all isotopes. Note that the simulation predicts that the gasket-aperture stops 96.3% of atoms for the
tubular aperture or 99.2% of atoms in the case of a simple round aperture.

Figure 2.5a shows the flux values predicted at the oven output and after the copper gasket
aperture. The flux values after the ZS tube, without any laser cooling implemented, are also
cited as these are representative of the number of atoms that are accessible for slowing and
loading into the MOT. Finally, we also compare the simulation with two sets of measurements
of the flux in the MOT chamber, obtained by imaging the fluorescence from the atomic beam
probed with resonant laser light (Technical details are given in Appendix C). The measured
flux values (red and green markers in Figure 2.5a) fall slightly short of the numbers predicted
by the model (blue circles in Figure 2.5a), but still show a reasonable agreement with it. More
strikingly, we observe a drop in flux over time, that we suspect originates from mechanical
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Fig. 2.6 Light Absorption in TC - The atomic beam numerical simulation was used to estimate
the fraction of photons from the TC beams absorbed by the passing atoms. The figure presents
the results for a range of beam powers used and temperatures between 1000 ◦C and 1200 ◦C. At
temperatures above 1100 ◦C the attenuation of the beams becomes significant which renders the use
of retro-reflected beams impractical. Also, this corroborates the initial reasoning for using the third
aperture after the oven to prevent the useless divergent atoms from entering the TC region and thereby
increasing absorption of cooling light. Here, the isotope abundance of 166Er was used to normalise
the atomic flux.

damage within the oven assembly caused by thermal stresses during temperature ramps11.
This is due to be addressed in maintenance planned for the near future. In Figure 2.5b, the
estimated lifetime of the 8.0g sample of erbium metal loaded into the oven is shown. At
the working temperature of T = 1100 ◦C, this should allow for at least 2.5 years of active
running12. The figure also contrasts the oven aperture design we use (from Figure 2.4) with
a simpler design that does not employ the tubular aperture in the effusion cell. It clearly
shows how the latter oven design leads to a weakly collimated beam with a larger total flux,
but smaller number of usable atoms, which would require yet larger temperatures to reach
sufficient MOT loading rates, leading to impractically short material lifetimes.

To demonstrate the importance of stopping the divergent atoms by employing the gasket
aperture, we estimate the fraction of absorbed photons from the TC beams. The scattering

11Ideally, we would only bring the oven down to room temperature in exceptional circumstances. Unfortu-
nately, a series of long power cuts, need to replace faulty touch-screens in the oven controller and the Covid-19
lockdown forced us to do this several times, likely causing the decrease in flux. One power cut incident stands
out as we were left unnotified about it for hours, which led to the draining of our emergency power supplies and
a brief period of uncontrolled cooling of the oven. We have since installed additional protection in the form of
an interlock system that initiates a controlled rampdown in the case of a prolonged power outage.

12The oven is kept at a standby temperature of T = 700 ◦C while the experiment is not in use.
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Fig. 2.7 MOT Chamber Atomic Flux - To aid the decision for the ZS tube diameter, we use the
numerical simulation to estimate the atomic flux in the MOT chamber over a range of sizes. The
data is shown for a simulation involving TC (40 mW per beam, corresponding to I

Isat
≈ 0.8, orange

markers) and without it (blue markers). The flux shows the expected scaling proportional to the solid
angle at which the end of the ZS tube is seen from the oven (fits corresponding to this scaling are
shown as dotted lines). Note that the cited fluxes are for the full set of isotopes.

events are counted up for a sample of atoms, scaled appropriately to the flux represented by
the sample and then compared to the total available rate of incoming photons, Rtot =

Ptotλ
hc .

The results presented in Figure 2.6 suggest that at the working temperature of T = 1100 ◦C,
the absorption level is at 3− 5% depending on the beam power, which is non-negligible,
but still sufficiently low to permit the usage of retro-reflected beams in TC. At higher
temperatures, the atomic flux would be sufficient to significantly reduce the intensity of the
reflected beam, rendering the TC stage imbalanced and leading to a transversal velocity bias.
Similarly, if the gasket-aperture had not been installed, the larger flux resulting from the
excess divergent atoms would have led to a much greater beam attenuation. The negative
effects of such a situation are well illustrated in Section 3.3 where the same symptoms result
from faulty viewport coatings. In that case, the beam power was reduced by 25%− 40%
in the retro-reflected branch, and the resulting velocity bias completely annuls the positive
effects of the TC.

Another important consideration, that is also related to the pressure management and
differential pumping discussions from Section 2.1.1, concerns the impact of the ZS tube
diameter, Dzs, on the atomic flux that can reach the MOT chamber. As Figure 2.7 suggests,
the flux of potentially loadable atoms scales approximately as D2

zs, i.e. the solid angle
corresponding to the end of the tube from the point of view of the oven. This poses a clear
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trade-off where wider tube diameters allow for a greater number of atoms to pass to the
MOT region, but offer a weaker differential pressure margin. The combined results from
Figures 2.7 and 2.3 convinced us that Dzs = 8mm is a good compromise. A lesser, but not
insignificant factor was also the architecture of the ZS magnetic coil, that would require more
windings or higher currents, in order to produce the required field profile if the tube was
made thicker.

2.2 Magnetic Field Control

Magnetic fields are employed for a wide set of purposes in our experiment. Laser cooling
techniques - the MOT and the ZS - require particular field profiles to create a spatially variable
detuning for the respective atomic transitions. Homogeneous offset fields are also required
for maintaining the spin polarisation of the atoms, tuning interactions and controlling the
position of the MOT cloud. Finally, as erbium is a strongly magnetic atomic species with
closely spaced Feshbach resonances (see Figure 1.4, and also [29]), any spurious noise and
offsets in the magnetic field need to be cancelled out, ideally down to milligauss level 13, to
fully isolate the atoms from the surroundings.

For this set of purposes, we implement a range of magnetic field coils around the vacuum
chamber. The coils installed so far [70], surrounding the MOT chamber, are shown in
Figure 2.8a, and the design of the science cell coils will follow in the near future. As the
field stability is particularly important in the region around the science cell and the MOT
chamber, the majority of stainless steel chamber components in the immediate vicinity are
manufactured out of 316LN stainless steel, that has a particularly low magnetic permeability
(typically µr−1∼ 10−3) and these components are highlighted in Figure 2.8b. Furthermore,
both the breadboard on which the experiment was assembled, and the optical table on which
it is now mounted are made of non-magnetic materials (aluminium and 316L stainless steel).

The Zeeman slower system consists of six coils, three of which comprise the character-
istically shaped Profile (and Bias) field coil in the ‘spin-flip’ configuration. An additional
coil is used to adjust the field at the end of the slowing trajectory and a pair of compensation
coils is used to cancel any residual field offsets and gradients originating from the remainder
of the ZS system. All details about the design and implementation of the Zeeman slower are
laid out separately in Section 3.4.

The MOT chamber is equipped with four sets of coils. The gradient coils, that are in
near-anti-Helmholtz configuration and the bias coils, in near-Helmholtz configuration, are

13Which will be achieved through active feedback using the set compensation coils and employing a high
resolution 3-axes magnetometer probe (Honeywell HMC2003).
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Fig. 2.8 Magnetic Fields - a) The collection of magnetic field coils surrounding the MOT chamber.
This includes the Zeeman slower coil system including a pair of small compensation coils that mitigate
for any residual field at the MOT position originating from the ZS. The MOT chamber itself is fitted
with a gradient coil required for cooling, and two offset coils for fine and coarse adjustments. Finally,
a large compensation cage surrounds the chamber and can be used to apply uniform fields along all
three directions. b) In order to have a full control over the fields, we designed the majority of steel
parts in the critical regions around the MOT chamber and the science cell to be made from 316LN
stainless steel, that has a very low magnetic permeability. These components are shown in light-green.

Coil Quadrupole Offset Low Field

Windings 6×4 6×2 2×2

Radius (Inner) 44.0mm 49.3mm 65.8mm

Distance (Inner) 36.6mm 24.0mm 31.0mm

Thickness (R) 8.1mm 8.1mm 2.7mm

Thickness (H) 10.4mm 5.2mm 5.2mm

Field 833 (−416) mG / cm
A 2.0 G

A 535 mG
A

Resistance 78mΩ 46mΩ 18mΩ

Inductance 150µH 50µH 10µH

Table 2.1 MOT Chamber Coil Specifications

intended for controlling vertical field gradient and offset. The gradient field is essential for
the operation of the MOT, whereas the offset field can be used to control the vertical position
of the MOT, and in the future, the scattering properties of atoms via Feshbach resonances. In
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addition to these, there is also a pair of lower-current ‘fine’ offset coils, and a single loop
RF antenna (coaxial with the remaining coils, not pictured in Figure 2.8a). The geometry
and field characteristics of these three pairs of coils, stemming from the design done by a
colleague [70], are given on Table 2.1.

Coils X Y Z

Windings 6×4 6×4 6×4

Width 482mm 515mm 560mm

Length 977mm 540mm 1010mm

Distance 288mm 286mm 336mm

Field 664 mG
A 744 mG

A 583 mG
A

Resistance 3.3Ω 2.4Ω 3.6Ω

Inductance 3.5mH 2.3mH 3.8mH

Table 2.2 Compensation Cage Coil Specifications

The entire UHV section of the vacuum chamber is encapsulated inside the compensation
cage - a set of seven14 large rectangular coils, 24 windings each. It is designed to be used for
active compensation of magnetic field noise, as well as for applying bias fields, primarily
during optical transport to maintain the polarisation if the atomic cloud. The geometry
was optimised for field uniformity, which had a direct impact on the size, and therefore
on the frequency response specifications of this system. Therefore, we are considering the
introduction of a more compact set of local compensation coils in the science cell region that
would enable field control at higher frequencies (> 1 kHz). Dimensions and field parameters
of the compensation cage are presented in Table 2.2.

The coils designed and built so far allow for the implementation of the laser cooling
techniques, background field compensation, and implementation of bias fields in the MOT
chamber and during transport. The entire coil system for the science cell remains to be added.

14The direction along the transport path (Y) is addressed by three coils, as a pair of coils cannot provide
sufficiently uniform field along the full length between the MOT chamber and the science cell.
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Fig. 2.9 Optical access for Transversal Cooling and Fluorescence measurements - A set of four
viewports mounted on the cube immediately after the oven provides the optical access for transversal
cooling. The available clear aperture is 35 mm. The cross mounted adjacent to the TC cube gives
opportunity for fluorescence or absorption measurements on the atomic beam.

2.3 Optical Access

The range of techniques for manipulation and imaging of atoms in our experiment calls
for lavish optical access to the chamber. This has greatly influenced the final shape of the
chamber, especially the design of the 14-port MOT chamber and implementation of a separate
glass science cell, as well as the large number of different anti-reflection coatings used on
chamber viewports15.

2.3.1 HV Section

In the HV section of the chamber shown in Figure 2.9, straight after the erbium oven, we
perform transversal cooling of the atomic beam, by crossing orthogonally two retro-reflected
elliptical laser beams, addressing the 401 nm transition in erbium. Following that, a 6-way
cross is fitted, carrying three auxiliary viewports for spectroscopy and measurements on the
atomic beam. The details about implemented optical coatings are given in Table 2.3. After
repeated usage of these viewports for fluorescence measurements, we realised that leaving
space for a viewport on the rear side of the cross would have been useful, as it would allow
for a mirror to be placed behind it to collect twice the amount of the fluorescence light.

15All viewports are manufactured by Torr Scientific, excluding the ones deignated for ‘Atom Beam Probing’
in the HV section (see following footnote)
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Designation Qty. Position Fig. Size AR Coating

Transversal Cooling 4 HV Section 2.9 34mm 401nm

Atomic Beam Probing 3 HV Section 2.9 34mm Unknown16

Table 2.3 HV Section Anti-Reflection Coatings

2.3.2 UHV Section

The MOT chamber is the central part of the experimental apparatus where the other sections
merge and it also provides optical access for the MOT beams, optical transport, imaging and
the Zeeman Slower beam (Figure 2.10, also see Table 2.4 for information about AR coatings).
We opted for a solid block chamber design with 12 flange connections (4x DN40CF & 8x
DN16CF) in the horizontal plane and two DN40CF in the vertical plane. On its top and
bottom side it has 20 mm deep grooves machined around the flanges to house the magnetic
field coils. Also, it has eight holes on either side, symmetrically arranged around the collar,
to act as support points for the chamber itself, as well as the optics and coils mounted around
the chamber.

Designation Qty. Position Fig. Size AR Coating

MOT - Vertical 2 MOT Chamber 2.10 34mm 583nm, 767nm, 1030nm

MOT - Horizontal 4 MOT Chamber 2.10 34mm 583nm, 767nm

ZS Beam Input 1 UHV Section 2.10 34mm 401nm

Imaging 2 MOT Chamber 2.10 15mm 401nm, 767nm

ODT and Transport 1 MOT Chamber 2.10 15mm 1030nm, 1570nm

Auxiliary 1 MOT Chamber 2.10 15mm Uncoated

Table 2.4 UHV Section Anti-Reflection Coatings

A rectangular glass cell17 is fitted on one side of the MOT chamber to provide good
optical access for performing the experiments. An all-glass chamber means that we have
access from almost all directions, which leaves great freedom in the design of the optical
systems around it, and also a good degree of flexibility for any future alterations. On the
other hand, we decided against AR coating the science cell as optical access will be required

16These viewports have been recycled from a vacuum chamber no longer in use and hence the coatings are
unknown. We measured the transmission for a single viewport to be ∼ 94% at the wavelength of 401nm

1730 mm×30 mm×100 mm cell with 2.5 mm thick walls, made from Boroflat glass by Precision Glass-
blowing
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Fig. 2.10 Optical access to the MOT chamber - The chamber houses 14 ports in total. The six
DN40CF viewports with a 34 mm clear aperture diameter provide access for the MOT beams. The
A1-2 MOT viewports are also used for a crossed optical dipole trap beam (ODT2). The chamber
additionally has four DN16CF viewports: (15 mm clear aperture diameter) for the optical dipole trap
and transport beam access (ODT1), absorption imaging (IMG IN/OUT) and an auxiliary viewport
(sometimes used for fluorescence imaging). Finally the chamber extension shown in half-section view
is the entry point of the Zeeman Slower beam (ZS) that is subsequently reflected off a in-vacuum
mirror. The information about the anti-reflection coatings implemented in this chamber section is
presented in Table 2.4.

from various angles of incidence and over a very wide interval of wavelengths. In that case,
coating the cell which improves performance for certain beams will necessarily impair the
reflection properties for some other beams. In order to achieve a good atomic cloud lifetime
in final trap, we decided to include a reducer cross with a vacuum pump between the MOT
Chamber and the science cell. This sets the total distance over which the atoms need to be
transported at approximately 40 cm.

The ZS laser beam needs to be directed into the path of the atoms off a mirror, as the
incoming atoms are being deposited on the first surface they encounter, precluding the usage
of a viewport for this purpose (according to quick estimates, a mono-layer of erbium atoms
would form on a viewport after a day of operating the experiment). On the other hand, the
deposition of erbium on the mirror does not affect its performance significantly, as observed
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on similar experiments [57, 62] and also confirmed in our case after extended usage. For this
purpose we use a solid aluminium mirror with a UV-enhanced, polished and coated surface18.
It is fixed on a post resting on a flange mounted on a port aligner, giving an additional degree
of freedom for coarse alignment (see Figure 2.10). The base of the post that is flush with the
blank flange has a pattern of grooves etched into it to prevent any air pockets from getting
trapped, causing virtual leaks. This section is also valved off in case mirror maintenance is
required at some point over the lifetime of the experiment.

2.4 Vacuum Chamber Assembly

Putting together a complex vacuum chamber while ensuring structural integrity, and avoiding
contamination is a delicate task. Fortunately, plentiful written material and unwritten proce-
dural experience has accumulated among experimental physicists, which we chose to follow.
Naturally, this all was seasoned with a pinch of improvisation where necessary. This section,
along with Appendix D, aims to give insight into this daunting but interesting process, and
hopefully leave some useful advice for colleagues in the field.

The first part of the system that was put together was the HV section, save for the
effusion cell oven and the vacuum pumps to avoid exposing them to moisture for prolonged
periods (they all arrived with flanged covers keeping them under vacuum), and viewports
to protect the AR coatings from mechanical damage. The ZS mirror branch of the chamber
was completed next, and after the compensation cage was positioned into place, the MOT
chamber was connected to it. The remaining branches around the MOT chamber followed,
with the ZS tube being the last part to be added, aligning the direction of the atomic beam
in the process. When tightening the flange connection between the ZS tube and the MOT
chamber, care was taken not to introduce stress by stretching the tube between the two
supported parts, by carefully lifting the HV section allowing any tension to relax. Only after
the passive chamber components were all assembled, the viewports, pumps and the oven
were installed.

The oven was filled with 8.0 grams of erbium following the instructions from the manual
and also the detailed description of the procedure given in [57]. The erbium metal19 was cut
into small pieces, less than 3 mm in size, using clean wire cutters. The tantalum crucible of
the oven was filled with erbium and assembled by fixing the apertures and the hot lip section
in place. The crucible was then carefully inserted into the body of the oven, watching out

18Custom mirror by Thorlabs, mirror surface and coating equivalent to F01 UV Enhanced Aluminium
mirrors.

19Distilled dendritic erbium from Alfa Aesar
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Fig. 2.11 Chamber Construction and Pumpdown - a) Initial steps in assembly; b) Mostly assembled
chamber; c) Fully assembled chamber with turbo pumps attached; d) Chamber wrapped in heaters
and insulation during the bakeout.

for the brittle ceramic discs holding the oven heaters, and then fixed in place using tantalum
wire.

During assembly, at the stage when the viewports on the MOT chamber20 were being
installed, it was observed that some of the bolts holding the flanges were slipping inside
the tapped holes. This prevented us from establishing leak-proof connections as the screws
could not be tightened sufficiently. After the examination of the affected tapped holes, it was
observed the threads were too shallow in the radial direction. The internal diameter of the
threads was measured to be between 5.5 mm and 5.7 mm, instead of 5.0 mm as prescribed
for standard M6 tapped holes, in all 24 holes on the DN40CF flanges in the horizontal plane
of the MOT chamber21. With the help and advice of the student workshop supervisor at

20Custom 316LN stainless steel chamber made by Scanwel.
21We have not been able to determine the exact cause of this defect, even after speaking to the manufacturer,

but we suspect it might have been due to either the usage of a wrong drill bit, or due to drill malfunction causing
it to wobble.
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the Cavendish Laboratory, the threads were refurbished using Helicoil spirals. This process
consists of boring a wider, 6.3 mm diameter hole in place of the damaged thread, followed
by tapping a larger gauge thread with a tool included in the refurbishment kit, and then
inserting a spiral that functions as an adaptor between the larger thread and M6. The spirals
are made from a non-magnetic type of stainless steel (most probably 304L)22 and should not
compromise the magnetic specifications of the chamber. Following this repair procedure,
the chamber was thoroughly cleaned with acetone, including a treatment in the ultrasonic
bath, to remove machine oil. Following this repair procedure, all connections to the vacuum
chamber were successfully tightened with no detectable leaks.

Anticipating the relocation of the experiment from Cambridge to Oxford, the entire
vacuum system was built on an aluminium breadboard23 that is sufficiently light to allow
easy transport, but also rigid at the same time.

2.5 Reaching the UHV Regime

Once the vacuum chamber was fully assembled and closed, we attempted pumping out the
air with the rough pumps to check for serious leaks. While this was successful, we still had
to open the vacuum chamber on two occasions. First, the anti-reflection coatings on the
MOT viewports24 failed after being exposed to vacuum conditions, and then the gate valve
between the HV and UHV sections malfunctioned so it had to be replaced. During the period
of waiting for replacements, we decided to acquire and install the RGA25, that would later
become useful for leak checking.

To check for leaks, we used a helium cylinder with a tube mounted with a medical needle
as a dispenser, along with a mass spectrometer attached to the chamber. Initially, a borrowed
external leak checking station served this role26, while later we switched to using the RGA.
The flange connections were then tested by spraying helium around them and monitoring the
leak rate on the detector. Wherever a leak was detected, additional tightening was tried first.
If there was no result, the gasket was replaced and the pumpdown process was repeated.

22With the help of a permanent magnet, it was deduced that these are not made out of a ferromagnetic
material.

23Thorlabs PBG52521, 1800 mm×1250 mm×55 mm honeycomb aluminium breadboard
24The coated surfaces on the interior side developed smudge marks upon first contact with vacuum. The

viewports were shipped back to manufacturer for examination and recoating. No explanation was given about
the source of this issue, but we suspect (based on the experiences of colleagues) that the coating was damaged
by the cleaning agent leftover under the coating which started evaporating when the pressure was reduced.

25Stanford Research Systems RGA100
26Leybold Œrlikon UL 200 Helium Leak Detector
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Rough pumping during the initial pump-down was performed with a turbo pump27 backed
with a scroll pump28. The backing is necessary as the turbo can only function at output
pressures below 10 mbar. Once we approached the final pumpdown, another pumping station
was employed on the HV side, to provide sufficient pumping capacity for the bakeout.

A detailed insight into the implemented bakeout procedure is shown in Figure 2.12. As
the ion pump magnets were not rated for use above 150◦C, we decided to perform the bakeout
in two rounds, first for about two weeks at 180◦C without employing the ion/NEG pumps,
following a pause during which the magnets could be reinstalled, and then again for about
two weeks at 140◦C, activating the NEG elements along the way (Temperature and pressure
spikes in Figures 2.12b and d). Since a filament gauge was available to track the pressure
during the bakeout, we could observe that a leak has opened during the first round of baking
(Day 16 in Figure 2.12c). This was addressed before the second bakeout by tightening the
flange bolts on the respective connection. During both rounds of baking and the break in
between, temperature and pressure readings were monitored and logged on a PC via a serial
connection to the pump controllers and the thermocouple reader.

Drawing from Figure 2.12c it is clear that the first bakeout is responsible for almost all
of the outgassing reduction, which can be deduced from the behaviour of pressure during
intervals with constant temperature. Over the course of this bakeout, we observed a drop
in pressure by ∼ 104 (see pairs of points labelled 1-4 in Figure 2.12c marking the ends of
the four relevant intervals). This agrees very well with the predictions from literature, that
quote a drop in outgassing of similar magnitude for stainless steel chambers following typical
bakeout procedures [71].

With the end of the bakeout, the heating and insulation equipment was dismantled and
the chamber was again exposed. We then proceeded to a final round of leak checking, using
the RGA as the mass spectrometer. This has revealed a number of smaller leaks, that were
promptly closed by tightening bolts. Nevertheless, a leak sealant liquid had to be employed
on two connections involving viewports, as further tightening was not possible, due to the
softness of the fully annealed copper gaskets that, as it would risk contacting the flange faces.
After a lavish amount of the sealant29 was applied, both of the leaks were eventually closed.
The chamber was left with no leaks detectable with the RGA.

27Leybold Œrlikon Turbovac TW70H
28Leybold Œrlikon Scrollvac SC 5D
29KL-5 Vacuum Leak Sealant from Kurt J Lesker
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Fig. 2.12 Bakeout procedure - Temperature readings during the first (a) and second (b) round of
baking. The three temperature spikes in b) correspond to the activation and conditioning of the NEG
elements of the vacuum pumps. c) Pressure readings during the first round of baking, showing a leak
opened on day 16. Note that the ion pumps were inactive as magnets were removed. Points numbered
1-4 label the intervals of constant elevated temperature showing a total drop in pressure by a factor
of ∼ 104. d) Pressure readings during the second round of baking. The ion pumps were only active
during the ramping of the temperature to track the evolution of the pressure. The pressure spikes are
caused by excess outgassing during activation of the NEG elements and the RGA (immediately after
the bakeout) e) The diagram of the vacuum chamber showing the locations of the temperature sensors.



Chapter 3

Laser Cooling on the Atomic Beam

Laser cooling is the key ingredient in reaching the ultra low temperatures required for
quantum degeneracy in atomic gases. The method relies on manipulating the light scattering
force to slow down individual atoms, resulting in a reduction in temperature. Our experiment
implements a sequence of laser cooling stages slowing and capturing hot atoms from the
beam emerging from the oven that is maintained at 1100 ◦C, eventually producing a cloud of
cold atoms at a temperature as low as 10µK in the MOT. This step is a prerequisite for the
cooling to proceed further via evaporation methods. The current and the following chapter
cover the foundations of the methods we use and show the progress in their implementation.

3.1 401 nm Laser System

The blue laser (401 nm) is used for the initial laser cooling steps, the Transversal Cooling
(TC) and the Zeeman Slower (ZS), and for absorption imaging. The choice of this particular
wavelength comes from the broad linewidth of the corresponding atomic transition, which
makes it ideal for the job due to large achievable scattering rate. As the accompanying
Doppler limit on the temperature that can be reached with this methods is high, more than
700µK, further cooling will be performed on a narrower transition. Additionally, a probe
beam at this wavelength is required in the shelving spectroscopy setup that we temporarily
use for locking the 583 nm laser (Details in Subsection 4.3.2). The light is generated by a
frequency doubled1 Ti-Sapphire2 laser pumped from a solid state laser operating at 532 nm3.
This system is capable of outputting up to 2.0 W of optical power at 401 nm from the
frequency doubler stage, while the available power of pre-doubled, 802 nm light is 4.2 W.

1MSquared ECD-X module
2MSquared SOLSTiS system
315W Lighthouse Photonics Sprout G
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Fig. 3.1 401 nm Laser Distribution Optics - Zeeman slower light is drawn straight from the laser
whereas all remaining beams are frequency-shifted by AOMs. We use 3:1 (and 2:1) telescopes to
keep the light intensity on certain optical elements below the damage threshold, since these can be
comparatively low for near-UV light. All focal lengths are in millimetres. Fibre ports legend: ZS
= Zeeman Slower; SP (- Aux) = Spectroscopy (auxiliary port); TC - H(V) = Transversal Cooling -
Horizontal (Vertical); IM = Absorption Imaging.

The light distribution setup is shown in detail in Figure 3.1. We employ three double pass
AOMs4 to implement frequency offsets and control the light intensity of the spectroscopy,

4Gooch & Housego AOMO 3270-125 Acousto-Optical Modulator at 270MHz
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imaging and TC light, while the ZS light is picked off directly from the laser output. With this
configuration, the imaging and TC light can be tuned in the vicinity of the atomic transition,
while the ZS light stays red detuned by approximately 540 MHz.

As described in Sections 3.2 and 4.3, we failed to replace a broken hollow cathode lamp
(HCL), that had been discontinued by the manufacturer, with a new one that would match
performance in terms of optical density. As a result, we have been forced to switch between
using two different laser locking methods to stabilise the frequency of this laser system.
Consequentially, there are two fibre ports designated for spectroscopy - the main one leading
to the modulation transfer spectroscopy (MTS) setup, using a HCL as an atomic reference,
and the auxiliary one leading to the vacuum chamber, used for modulated fluorescence
spectroscopy on the atomic beam from the effusion cell oven.

Due to a relatively high optical power present in the system, we have opted for using a
1:3 telescope after the laser output, to increase the beam waist radius to about 1 mm. Short
wavelength laser light is known for its detrimental effects to optical elements, particularly
PBS cubes5. With the addition of the telescope system, we assured that the intensity levels
are an order of magnitude below damage thresholds of the elements used, enabling long-
term functioning of the system. Otherwise. we have not experienced issues with other
polarisation optics6 at this wavelength. Another issue caused by high optical power is the
distortion of the optical beam on the AOM in the TC branch. This issue was identified
by projecting the resulting beam onto a camera and then mitigated for by installing a long
focal length cylindrical lens in front of the AOM. The cause was narrowed down to thermal
effects originating from the absorbed laser light after investigating transient behaviour caused
by switching the light or the RF power on and off. Finally, care had to be taken to find
appropriate optical fibres7 for the ZS and TC light as these require up to 200 mW at the fibre
input.

Finally, there are several issues with the laser itself that are worth pointing out:

• After one year of regular use and another year of light use, the Sprout G pump laser
was no longer able to maintain the specified 15 W of power and had to be operated
at lower set points. In parallel with that, it would frequently experience episodes of
intermittent mode-hopping, resulting in unlocking of the Ti-Sapphire system. The laser
was shipped to the manufacturer for repair and as of June 2021 (one year after repair)
it functions without issues.

5We use high power PBS cubes from lens optics - PBC0,5"-370/420 HP - at places where the highest light
intensities are present

6We use a number of half-wave and quarter-wave plates from Thorlabs and Day Optics
7Schäfter+Kirchhoff PMC-E-400Si-2.8-NA011-3-APC.EC-700-P
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• An issue where a back-reflection originating from somewhere within the frequency-
doubler cavity corrupts the Ti-Sapphire wavelength lock kept appearing during usage.
This was mitigated by installing an optical isolator8 between the two components.
We suspect that the issue might have been present from the start, but as it was only
explicitly discovered9 after lengthy usage and it is not discernible from the previous
issue unless the right monitor signals are tracked, we cannot say with certainty when
it originated. Before this issue was fully solved, the remedy was to slightly change
the input alignment into the doubler cavity and then reoptimise the intra-cavity align-
ment. This would usually solve the problem temporarily, but due to a very sensitive
dependence on the system alignment, it would reappear again as a result of thermal
drifts.

• Finally, the frequency-doubler is very sensitive to vibrations, apparently due to a
relatively low-frequency piezo resonance (∼ 2 kHz) present in its cavity locking loop.
With the right cavity lock loop logic settings applied in the control software10, the
impact of this issue was minimised, as it would often spontaneously jump back into
lock after vibration-causing incidents of lesser extent.

3.2 Spectroscopy and Laser Stabilisation

The lasers employed for laser cooling in our experiment need to be locked to the respective
atomic transitions. The available options are either using an atomic reference, i.e. a sample
of erbium, and doing spectroscopy on the actual transition of interest, or providing a stable
frequency reference such as an optical cavity or a stabilised secondary laser source. In our
case, there are two possibilities for the atomic reference - the beam emerging from the erbium
oven or an erbium spectroscopic lamp11. The former is readily accessible and has a relatively
narrow distribution of transversal velocities, but other laser beams interfere with it over
the course of the experimental sequence and the relatively low atomic (flux) density that is
available makes locking to the narrower, 583 nm line quite challenging. The other option
consists of using a Hollow Cathode Lamp as a reference. This technology involves a pair

8IO-5-780-HP
9The ’smoking gun’ was the observation that jumping would only occur on condition that there was 401 nm

light being generated by the doubler. If the light was blocked before or within the doubler cavity, the Ti-Sapphire
would remain locked indefinitely. The issue with the pump laser had similar apparent symptoms, but was
obviously not correlated with the presence of the doubled light in any way.

10Disabling the immediate re-lock scan search upon losing lock.
11Erbium vapour cells do not exist as, due to the high melting point of erbium (1529°C), impractically high

temperatures are required for any significant vapour to be formed.
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of electrodes in an enclosure filled with buffer gas, typically neon or argon. The cathode is
shaped as a hollow cylinder and coated with erbium on the internal surface. Additionally,
for this type of spectroscopy, a special see through geometry is required, where a laser
beam can be directed through the cylindrical cathode. Finally, when a high voltage (about
120 V DC, for a typically used current of 10 mA) is applied across the electrodes, a stream
of ionised buffer gas atoms flows from the anode towards the cathode, sputtering erbium
atoms off the coated surface into the region inside the cylinder. This provides a stable and
independent source of atoms, albeit with a larger velocity spread. Unfortunately, we only
purchased one lamp initially12, with the aim to test the method and prototype the optical
system. Shortly after, that lamp model was discontinued by the manufacturer and it turned
out that the performance of other lamps available on the market varies greatly. We then
purchased a different model of the HCL13, initially as a spare option14, but it has proved to
be inferior to the former model in terms of atomic density that it produces. The chronological
summary of the spectroscopy techniques used for locking our cooling lasers is shown in
Table 3.1.

Usage period 401 nm Lock 583 nm Lock Reason for changing

02/19 - 02/20 MTS (Heraeus HCL) MTS (Heraeus HCL) MOT unstable

02/20 - 01/21 Mod. Flu (oven beam) MTS (Heraeus HCL) HCL broken

02/21 - 06/21 MTS (Photron HCL) Shelving (oven beam) MOT unstable

06/21 - MTS (Photron HCL) PDH (ULE Cavity) NA

Table 3.1 Laser stabilisation techniques employed on the experiment -

3.2.1 Modulation Transfer Spectroscopy

The laser locking technique most widely used in our setup so far is Modulation Transfer
Spectroscopy (MTS) [72, 73]. This method is relatively simple to implement and provides
a Doppler-free, zero-offset signal, that is also insensitive to background magnetic fields.
It employs a phase-modulated pump beam that overlaps with a counter-propagating probe
beam within the region containing the sample of atoms. The combined action of the two
beams induces three-wave-mixing processes that ultimately result in photons offset by the

12Erbium Single-Element See-Through Hollow Cathode Lamp from Heraeus
13Supplied by Photron
14At this point in time we were using the a single lamp to lock both lasers, which later proved to be

insufficiently stable for the MOT laser.
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Fig. 3.2 Modulation Transfer Spectroscopy Setup (basic version) - a) The setup now used for
locking the 401 nm laser to the atomic transition in our experiment. Spectroscopy light is supplied
through single fibre input where the probe and the pump beam are simply split on a polarising beam
splitter. b) The error signal from the 401 nm transition generated using the Heraeus HCL and a
19 MHz modulation frequency on the EOM. The inset offers a closer look onto the 166Er peak.

modulation frequency being emitted into the path of the probe beam. This induces a beating
note in the intensity of the probe beam that can be measured on a photodiode and extracted
using a phase sensitive detection technique. The basic version of the setup is shown in Figure
3.2a, along with an example of the error signal in Figure 3.2b.

To gain further understanding of the technique and the underlying processes, one can set
up a simple model based on a two-level system (Figure 3.3) - an atom with levels |a⟩ and |b⟩
with energies ℏωa and ℏωb - with transition frequency ω0 = ωb−ωa and rate of spontaneous
decay Γ. A probe beam at frequency ω is incident onto the atoms from one direction, and a
modulated pump beam with an offset carrier frequency ω +∆ and sidebands ω +∆±δ is
counter-propagated to it.

The Hamiltonian governing the evolution of this system can be written as Ĥ = Ĥ0 + Ĥ1

where Ĥ0 is the unperturbed part:

Ĥ0 = ℏωa |a⟩⟨a|+ℏωb |b⟩⟨b| (3.1)
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Fig. 3.3 Modulation Transfer Spectroscopy - Simple Model - a) The layout of the simple model
showing the two-level structure of the atoms in the interaction region, along with the incoming light-
fields of different frequencies corresponding to the pump (ω +∆, ω +∆±δ ) and probe (ω) beams,
and the emitted ‘modulation’ photons at frequency ω±δ . b-c) The three-wave-mixing processes that
result in the ‘modulation’ photons.

and the perturbation due to the light electric field (assuming linear polarisation along the
z-axis) is [74]:

Ĥ1 = E(t)µab (|a⟩⟨b|+ |b⟩⟨a|) (3.2)

where µab = e⟨a|z |b⟩ is the dipole transition matrix element. The electric field that corre-
sponds to the probe and the pump beam is:

E(t) =
1
2 ∑

α

(
Eαei(ωα t−kα x)+ c.c.

)
(3.3)

where the sum over α iterates over the four field components present in the beams, and the
associated parameters ωα and kα take the values listed in Table 3.2. Eα are complex electric
field amplitudes, reflecting the absolute phase of the field.

The evolution of the density matrix ρ = |ψ⟩⟨ψ|, with ψ = ca |a⟩+ cb |b⟩ representing
the wave function of the system, describing the populations and coherences in the rest frame
of the atom is governed by the Lindblad master equation [75, 76]:

ρ̇ =− i
ℏ
[
Ĥ,ρ

]
− Γ

2
(|b⟩⟨b|ρ +ρ |b⟩⟨b|−2 |a⟩⟨b|ρ |b⟩⟨a|) . (3.4)

Following the approach from [77, 78], given an atom with velocity v, we can substitute
x = x0 + vt into Equation 3.3 and implement the Hamiltonian from above, yielding the
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Component α ωα kα

Probe p ω k0

Pump carrier c ω +∆ −k0

Pump + sideband + ω +∆+δ −k0

Pump - sideband − ω +∆+δ −k0

Table 3.2 Definitions of ωα and kα from Equation 3.3 - k0 =
2π

λ
is the wave number of the laser

light used.

following set of differential equations:

ρ̇bb =−ρ̇aa =−Γρbb +
iµabE(t)

ℏ
(ρab−ρba) , (3.5)

and

ρ̇ab = ρ̇
∗
ba =

(
−Γ

2
+ iω0

)
ρab−

iµabE(t)
ℏ

(2ρbb−1) . (3.6)

As long as the transition is not strongly saturated, these equations can be solved by treating
the electric field as a perturbation and expanding the density matrix into a series in terms of
the powers of the electric field:

ρi j = ∑
n

ρi j
(n) (3.7)

for i, j ∈ {a,b}. The unperturbed solutions are obtained from the simple equations:

ρ̇
(0)
bb =−Γρ

(0)
bb , (3.8)

and

ρ̇
(0)
ab =

(
−Γ

2
+ iω0

)
ρ
(0)
ab (3.9)

and the perturbations are then obtained iteratively from:

ρ̇
(n)
bb =−Γρ

(n)
bb +

iµabE(t)
ℏ

(
ρ
(n−1)
ab −ρ

(n−1)
ba

)
, (3.10)

and

ρ̇
(n)
ab =

(
−Γ

2
+ iω0

)
ρ
(n)
ab −

iµabE(t)
ℏ

(
2ρ

(n−1)
bb −δn,1

)
(3.11)

that are integrable for sinusoidal driving. The group of terms containing the modulation
transfer signal is contained in ρ

(3)
ab and can be obtained by first applying the rotating wave-
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approximation and discarding the transient terms (any terms that are decaying exponentially
in time):

ρ
(3)MT S
ab =

i
4 ∑

q,r,s

[
1[

Γ′
2 − i(ωs−ω0− ksv)

] + 1[
Γ′
2 + i(ωr−ω0− krv)

]
]
×

ΩqΩrΩ
∗
s ei(ωq+ωr−ωs)t−i(kq+kr−ks)x

[
Γ′
2 + i

(
ωq +ωr−ωs−ω0−

(
kq + kr− ks

)
v
)]

[Γ+ i(ωr−ωs− (kr− ks)v)]
(3.12)

where Ωα = µabEα

ℏ is the complex Rabi frequency associated with the light component α and
Γ and Γ′ represent the natural linewidth of the optical transition, and the decoherence rate
(If there is no pressure broadening, then Γ = Γ′). Each term in the series corresponds to an
light field with frequency ωt = ωq +ωr−ωs and wavevector kt = kq + kr− ks. These can be
interpreted as three-wave mixing processes [79], and the ones that create modulation carrying
photons, with ωt = ω±δ and kt = k0 are shown in Figure 3.3(b-c). The overall resonance
condition for these processes is that both the one-photon and three-photon detunings should
be zero. For the first process (Figure 3.3b), assuming that the interacting atom has velocity v,
this implies:

• One-photon resonance: ω +∆±δ + kv = ω0,

• Three-photon resonance: (ω +∆±δ + kv)− (ω +∆+ kv)+(ω− kv) = ω0.

From these conditions it is deducible that the process is resonant for laser detuning ∆0 =

ω−ω0 =−∆

2 ∓δ for the velocity group v =− ∆

2k . Similarly, for the second process (Figure
3.3c):

• One-photon resonance: ω +∆+ kv = ω0

• Three-photon resonance: (ω +∆+ kv)− (ω +∆±δ + kv)+(ω− kv) = ω0

where the resonance occurs for ∆0 =−∆∓δ

2 and the velocity group v =−∆±δ

2k .
If a thermal velocity distribution, with Doppler width much wider than Γ is assumed, the

expression from Equation 3.12 can be integrated over velocities [77, 78] and the resulting
signal (i.e. the modulation component in the electric field) takes the form:

S(∆0) ∝
1

Γ′+ iδ

[
1

Γ+ i
(
∆0 +

∆

2 +δ
) + 1

Γ− i
(

∆0 +
∆

2 − δ

2

)−

1

Γ+ i
(

∆0 +
∆

2 +
δ

2

) − 1
Γ− i

(
∆0 +

∆

2 −δ
)
]

(3.13)
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Fig. 3.4 Fitted MTS Signal - The expression from Equation 3.13 fitted on top of an MTS signal
obtained on the 401 nm transition using the 166Er isotope and the HCL current of 5 mA. The optical
powers in the pump and the probe beams were 1.2 mW and 1.4 mW, with both beams having a waist
diameter of approximately 2 mm.

where Γ (Γ′) represents the transition linewidth (adjusted for pressure broadening).
We can employ this result to attempt to give an estimate of the pressure broadening in the

HCL, Γp. Taking the 166Er peak from Figure 3.2b, we can fit the phase-demodulated version

of Equation 3.13, taking Γ = Γ0
√

1+ s and Γ′ =
√

Γ2 +Γ2
p, and then using the amplitude,

phase and Γp as free parameters. The saturation parameter corresponding to the total optical
power in the setup used to obtained this data15 is s = 1.5±0.5. The fit is shown together
with the data in Figure 3.4 yields Γp = 2π× (4.1±0.1) MHz, giving a similar estimate to
the one in [57]. Given that s∼ 1, so the above perturbative approach is not strictly valid, this
should only be taken as a rough estimate.

As shown in [80], assuming Γ′ = Γ, the in-phase16 and quadrature components of
the signal from Equation 3.13 reach maximum peak-to-peak values for δ = 1.20×Γ and
δ = 1.50× Γ, respectively. Also, more importantly for locking, the slopes of the two
components are maximised for δ = 0.35×Γ and δ = 0.67×Γ. As the lock-in amplifier
offers the possibility of using an arbitrary demodulation phase, an interesting result is that
the signal slope is maximised for φ = 0.52×π and δ = 0.74×Γ

15The uncertainty margin originates from the value of beam diameter at the time of the measurement that is
not known exactly.

16The convention in the literature is to leave out the term 1
Γ′+iδ when defining the zero-phase, such that the

in-phase component represents a combination of four absorption-like features and the quadrature component is
a combination of four dispersion-like signals.
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3.2.2 Modulated Fluorescence Spectroscopy

Fig. 3.5 Modulation Fluorescence Spectroscopy - a) The simple optical setup used to obtain a
locking signal for the blue laser. An 8 mm diameter beam was orthogonally intersected with the atoms
propagating from the oven at the cross in the HV section. The laser frequency is frequency-modulated
at 30 kHz and the resulting fluorescence signal is picked up on the large area photodiode; b) Double
feedback loop, implementing a Red Pitaya controller board, used for laser stabilisation where the
atomic spectroscopy provides lock point offset correction to the main loop based on a wavelength
meter. The PID 1 in the Red Pitaya is responsible for the main feedback loop, while its offset is
periodically updated by enabling the loop incorporating PID 2 that takes the spectroscopy error signal
as the input. When the experiment is active, the output of PID 2 is kept frozen at its last updated value.
The board is also used to generate the modulation harmonic sent to the AOM driver and subsequent
lock-in detection on the photodiode signal.

After having to delegate the single properly functioning HCL in our possession for
locking the 583 nm laser, because of the poor performance of the locking setup with the lamp
shared by the two lasers (also see Section 4.3), an alternative method for locking the 401 nm
was needed, so we commissioned the wavemeter17 for this purpose. While its short timescale
stability of 2 MHz is more than sufficient to keep the laser on resonance with the broad
atomic transition, the drift of its frequency reference due to temperature fluctuations would
significantly detune the laser over a few hours. The solution we implemented to mitigate for
thermal drifts consists of relying on the wavemeter to keep the laser locked while running
measurements, with periodic updating of the lock-point based on the fluorescence signal on
the atomic beam between experimental sequence cycles.

17High Finesse WS7-60
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Fig. 3.6 MOT Loading Stability - Variation of the number of atoms loaded into the MOT with
tload = 15 s over 140 repetitions of the sequence. The mean and standard deviation of the atom number
in this sample are (4.84±0.26)×107.

Since we have taken the opportunity to mount extra viewports on the oven side of the
chamber, this point of access was now used to set up the fluorescence measurement on
the atomic beam, shown in Figure 3.5a. A 4 mm waist radius beam, frequency modulated
at 30 kHz was sent through the chamber, crossing the atomic beam perpendicularly to its
propagation direction. The fluorescence from the atoms was collected using a set of 2 inch
lenses through a third viewport, and directed onto a large surface area photodiode18. The
locking signal is then generated by demodulating the intensity signal using a lock-in detection
loop (Figure 3.5b). The feedback was then done using a double loop configuration, where the
main loop was feeding back the error signal from the wavemeter to the laser, with its locking
offset being determined by the secondary loop, that fed back the spectroscopy signal from
the atomic beam. When the experiment is running, the output of the secondary loop could be
frozen, allowing for the TC and ZS light to act onto the atoms without interfering with the
lock position. The full locking loop, including the lock-in amplifier, the two PID circuits and
the logic controls is implemented using a Red Pitaya controller board19 running the PyRPL
software package [81]. Using this technique, we successfully compensated the thermal drift
of the wavemeter, bringing the MOT loading number fluctuations to 5% RMS (Figure 3.6).

18Thorlabs PDA100A2, 75.4 mm2 amplified Si photodiode
19Red Pitaya STEMlab 125-14
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3.3 Transversal Cooling

Fig. 3.7 Transversal Cooling Optics - The delivery optics system layout used in both of the transversal
cooling beams. A set of two spherical and three cylindrical lenses is used to provide a tuning range
for beam waists along both directions. Initially, a 17 mm by 3 mm collimated elliptical beam was
used, but after the AR coatings on the viewports deteriorated, we proceeded to make the beams
slightly converging to mitigate for the attenuation. Upon passing through the chamber, the beam is
retro-reflected, and a quarter-wave plate is used to prevent interference of the beam with itself.

In order to increase the atomic flux available for the Zeeman slower as well as to mitigate
for the transversal spreading of atoms upon slowing, a 2D Doppler molasses cooling stage is
implemented after the oven. It consists of two orthogonal pairs of elliptical, retro-reflected
laser beams addressing the 401 nm transition. The optical setup for shaping the beams is
depicted in Figure 3.7 and incorporates two spherical lenses to set the minor waist of the
beam, followed by a triplet of cylindrical lenses adjusting the aspect ratio to achieve the
desired major waist. This five-lens configuration allows for both waist radii to be adjusted
independently within a narrow range around the design goal of 17 mm by 3 mm (see below).
Two quarter-wave plates, one on either side of the chamber set the polarisation such that the
direct and the back-propagating beam have circular polarisations of opposite handedness, to
prevent fringing within the cooling region, that can be detrimental to the performance.

We again employed the atomic beam numerical simulation to get a better grasp of the
parameters that we should use and the expected gains from this technique. The results
outlining the effects of varying the laser power and detuning are presented in Figure 3.8,
while the analysis into optimising the beam size is shown in Figure 3.9. With the help of
these results, we decided on the beam size of 17 mm by 3 mm, which also matches well with
the expected size of the atomic beam in the TC chamber. Not surprisingly, the simulation also
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Fig. 3.8 Transversal Cooling Power and Detuning - Predictions for the flux (a-b) and RMS
transversal velocity (c-d) at the start and the end of the ZS tube, respectively, obtained from the atomic
beam numerical simulation. The results show a large gain in flux of slow atoms that can be attained by
using transversal cooling and also a decrease in the transversal velocity that mitigates for the splaying
effect at the end of the ZS. Note that the cited fluxes do not account for the natural abundance of any
given Er isotope.

predicts that the cooling is optimised for a detuning in the vicinity of−Γ401
2 =−2π×15 MHz.

As demonstrated by the blue markers on Figure 3.10a, the effect of TC on MOT loading was



3.3 Transversal Cooling 55

Fig. 3.9 Transversal Cooling Beam Waists - Numerical simulation results for the flux (a) and the
RMS transversal velocity (b) at the end of the ZS tube with the TC power and detuning kept fixed at
P = 40 mW ( I

Isat
= 0.8) and δ =−2π×12.5 MHz. The results show that the flux is optimised in the

range of minor radii 2.0−3.0 mm whereas the cooling along the transversal direction favours slightly
higher waists. Both quantities seem to be insensitive to the major waist radius over the range from
10 mm to 17 mm. Note that the cited fluxes do not account for the natural abundance of any given Er
isotope.

shown to be an enhancement of the loaded number by up to three times, which is in decent
accordance with the idealised prediction from the simulation predicting approximately a
fourfold gain. Furthermore, the optimal value for the detuning was experimentally determined
to be δTC =−2π×12.5 MHz.

After experiencing a problem with the AR coatings on the entire set of viewports (Figure
3.10b), leading to significant loss of light intensity upon the passage through the chamber20,
we took advantage of the tunability of the optical system, to make the beams slightly
converging along the minor axis direction. This re-established the balance of forces in the TC
setup and avoided imprinting a transversal velocity bias to the atomic beam. The replacement
viewports have been sourced and will be installed during the first oven maintenance procedure
that will inevitably happen in the near future.

20The single-pass loss of 25%−40% was measured.
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Fig. 3.10 Enhancement of MOT loading by TC - a) Measured dependence of the MOT loading
number as a function of the single-beam optical power in the transversal cooling. The figure also
shows how the failed optical coating (pictured on (b)) caused an imbalance between the counter-
propagating beams, leading to TC imprinting a transversal velocity bias to the atoms and eventually
poor loading at high TC powers (orange markers). This was mitigated by making the beams slightly
converging, leading to an improvment in performance (blue markers). The laser detuning we use in
the TC setup for best performance is δTC =−2π×12.5 MHz.

3.4 Zeeman Slower

In many cold atom experiments, including ours, the atoms are sourced from a high tem-
perature oven that emits a collimated beam. At typical oven temperatures, the emerging
atoms have velocities of several hundreds of meters per second on average. Therefore, it is
necessary to slow the beam down considerably before loading the atoms into a trap, e.g. a
MOT, where capture velocities range between several and few tens of meters per second21.
Since most optical transitions used for cooling are in the (near-) visible wavelength range and
have line widths in the range of 0.1−30 MHz, the Doppler shift would span many transition
line widths during slowing. In order to employ the light scattering force, it is necessary to
keep the atoms near the resonant frequency, and the commonly used tool is the Zeeman
Slower (ZS). Its functioning principle is that the atoms are subjected to the scattering force of
a counter-propagating laser beam and specifically shaped electromagnetic coils provide the
field that offsets the atomic resonance via the Zeeman effect, compensating for the Doppler
shift change resulting from slowing.

21The MOT capture velocity is approximately 10 m
s in our case, see Section 4.1
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3.4.1 Idealised Zeeman Slower

The basic, first order, approach in designing a Zeeman slower is aiming for constant decel-
eration of atoms, which allows for straightforward determination of the velocity along the
length of the slower. As the scattering force (equation F.1) will stay constant for constant
detuning δ , the magnetic field profile should be such that it exactly counteracts the change in
the Doppler shift.

Assuming that the saturation factor of the optical transition as s = I
Isat

is constant along the
slower for simplicity (uniform profile, collimated beam; negligible absorption), the equation
of motion can be written as:

v2
0− v(x)2 =

2xFscatt

m
=

ℏkΓx
m

s

1+ s+ 4δ 2

Γ2

(3.14)

leading to the expression for velocity:

v(x) = v0

√
1− x

x0
(3.15)

where x0 is the length of the slowing region and it is then related to the capture velocity as:

x0 =
mv2

0
ℏkΓs

(
1+ s+

4δ 2

Γ2

)
. (3.16)

The total detuning, that we aim to keep constant along the length of the slower, depends on
the laser detuning w.r.t. to the optical transition, δ0, the Doppler shift, kv, and the Zeeman
shift, µ ′B, is given by the formula δ = δ0 + kv+ µ ′B

ℏ . Here µ ′ = µB (mege−mggg) denotes
the Zeeman factor of the optical transition used for cooling, as defined in Equation 1.3. From
this relation, we see that the ideal Zeeman slower magnetic field profile is calculated as:

B(x) =−ℏδ0−δ + kv(x)
µ ′

(3.17)

leading to the explicit solution:

B(x) = Bbias +Bprof

√
1− x

x0
, (3.18)

Bbias = ℏ
δ0−δ

µ ′
, (3.19)

Bprof =
ℏkv0

µ ′
. (3.20)
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Fig. 3.11 Ideal Zeeman Slower - Atom trajectories for an ideal ZS designed with the parameters
v0 = 350 m

m , x0 = 0.42 m, δ =−2π×10 MHz and s = 2: a) assuming no interaction with the light
outside the field region; b) implementing an offset to the field profile to achieve a finite final velocity
and accounting for the interactions with the light beam before and after the slower. The green dotted
line marks the velocity group that is resonant with the ZS light at zero field. These residual interactions
cause some atoms to slow down before entering the slower, as well as the atoms at the end of the
slower to experience some residual slowing.

These fields are designed to slow down atoms entering the slower at or below the capture
velocity, v0, down to rest at the end of the slowing region. Figure 3.11a shows the trajectories
of atoms with different initial velocities encountering an ideal Zeeman slower.

While this ideal picture gives a sufficient basis for the design of the slower, there are
multiple additional points that need to be considered to make a robust and efficient system.
From the imperfections in the magnetic field profile and the slowing laser beam to the forces
acting on atoms outside of the slower design region, these all need to be accounted for to
gain full understanding of the Zeeman slower operation.

3.4.2 Realistic Zeeman Slower

In order to make the slowing action robust to field imperfections and scattering force fluctua-
tions, the total detuning, δ , should be negative. This assures that the atoms travelling slower
compared to the ideal velocity trajectory v(x) at any point, experience reduced slowing, and
the atoms travelling (slightly) faster than the ideal velocity experience enhanced slowing.
Therefore, all the atoms that enter the Zeeman slower at v≤ v0 will eventually approach the
ideal slowing trajectory described by Equation 3.15.
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In order to select an appropriate value for δ , we can define the ZS efficiency factor as the
ratio of the actual and the maximum attainable ZS deceleration, a(max)

ZS = ℏkΓ

2m
s

1+s :

η =
aZS

a(max)
ZS

=
1+ s

1+ s+ 4δ 2

Γ2

. (3.21)

Designing the slower with a lower η value enhances robustness, as it leaves a larger velocity
headroom at any point along the trajectory. A good way to show this explicitly is to look for
the maximum value of the excess velocity ∆v(x) = v− videal(x) for which the ratio v

videal(x)
will decrease. Here videal(x) represents the ideal velocity trajectory from Equation 3.15. This
condition can be written down as d

dx

(
∆v(x)

videal(x)

)
< 0, or equivalently:

− 1
mv2

ideal
Fscatt(x,v)+

v
2videal(x0− x)

< 0 . (3.22)

This will eventually yield a quadratic inequality, leading to the maximum locally-stable
excess velocity:

∆vmax(x) = vΓ

√
1−η

η
+

√
v2

ideal
2
− v2

Γ
− videal

2
(3.23)

where vΓ = Γ
√

1+s
2k . While the fulfilment of this condition does not strictly guarantee stability

along the full trajectory22, it clearly demonstrates how the the η parameter affects robustness.
In contrast, drawing from Equation 3.16, the design length of the ZS can be expressed as:

x0 =

√
mv2

0
ℏkΓηx0

1+ s
s

(3.24)

showing that increasing the robustness of the Zeeman slower by decreasing the η parameter
directly calls for a longer slowing trajectory, if the capture velocity v0 is to be kept unaltered.
A typical compromise between these two lines of reasoning is using 1

2 ≤ η ≤ 2
3 [57].

As suggested by Equations 3.18, the maximal magnitude of the fields required for the
slower is |B|max = max

(
|Bbias|, |Bbias +Bprof|

)
. In order to minimise the required volume of

the coils and the electrical power required to drive them, slowers are often designed in the so
called ‘spin-flip’ configuration, with a negative Bbias. Such slowers are characterised by the
existence of a point along the trajectory with zero net magnetic field. Given that multiple
Zeeman levels are a prerequisite for this technique to be used, this inevitably renders the
levels degenerate in the vicinity of the zero-field region, leading to the population of the

22It functions well as a global condition in regions where videal≫ vΓ
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ground state envelope to be redistributed away from the state useful for slowing. It is then
essential for the operation of the ZS that the population is optically pumped back to the
correct state, before transitions from the remaining mg levels become off resonant. With a
simple heuristic investigation, this condition can be tested for a given set of design parameters.
Assuming that the Zeeman slower operates on the mg =−J→ me =−(J+1) transition, the
differential Zeeman coefficient between this transition and the outermost transition of the
same type, mg = J→ me = J−1 will be:

∆µ
′ = |µ ′(−J→−(J+1))−µ

′(J→ J−1))|= 2JµB|gg−ge| . (3.25)

This means that the detunings of all the transitions lie within the range of δdiff =
∆µ ′
ℏ
∣∣dB

dx

∣∣∆x,
where ∆x is the distance from the zero crossing. For this purpose, the magnetic field slope at
the zero field point can be reasonably estimated as

∣∣dB
dx

∣∣= Bprof
x0

. Assuming that the velocity
at this point is v≈ v0, the time it takes an atom to reach the point where δdiff = Γ, is:

τ =
ℏΓx0

2Jv0µB|gg−ge|Bprof
(3.26)

which would mark the point where different transitions are no longer simultaneously resonant.
Finally, the number of scattering events during this period can be estimated as:

Nscatt =
ηΓsτ

2(1+ s)
=

ℏηΓ2x0

4Jv0µB|gg−ge|Bprof

s
1+ s

. (3.27)

The atoms will be optically pumped back into the correct state following the passage through
the spin-flip point as long as Nscatt≫ 2J, as each scattering process moves the atom one
Zeeman state closer to the desired stretched state, on average. If we substitute a set of
parameters representative of our experiment23, we obtain Nscatt

J ∼ 103, proving that the field
zero-crossing will not lead to loss of atoms from the trajectory.

As the MOT position cannot coincide with the end of the ZS field profile, it is not practical
to configure the slower to bring the atoms to rest. What is normally done, is to slightly
offset the bias field from the ideal configuration, such that the atoms are slowed down to
a finite final velocity, typically on the order of 10 m

s . In the first order approximation,for
shifts that are much smaller than the capture velocity, we can assume that the atoms still
trace a trajectory of constant detuning set by the field profile, which leads to the following

23Parameter values used in this calculations are: Γ = 2π×29.7 MHz; x0 = 0.42 m; v0 = 300 m
s ; s = 1; J = 6;

|ge−gg|= |1.195−1.1638|= 0.0312 and Bprof = 300 G, all being representative of the realistic conditions in
our experiment.
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expression for the final velocity:

vfin =
µ ′Bbias−ℏ(δ0−δ )

ℏk
. (3.28)

In the scope of the same approximation, the capture velocity would increase by the same
amount. Nevertheless, one should bear in mind that shifting the ‘square root’ field profile
compromises the constant force assumption, and increasing the final velocity is done at the
expense of robustness.

Another reason which calls for the design with a finite final velocity is the inevitable
residual force from the ZS light after the passage through the intended slowing region.
Despite being far-red detuned for the slow atoms, the light may still exert enough force to
significantly change the velocity and possible turn the atoms back. In our setup, the beam
detuning is δ0 = −540 MHz ≈ −18×Γ and the distance from the field profile end to the
MOT position is Lend ≈ 0.1 m, based on the value of the quantity (also taking s≈ 1):

2LendFscatt

m
=

ℏkΓx
m

s

1+ s+ 4δ 2
0

Γ2

≈ 90
m2

s2 (3.29)

we can see that this residual force can turn back atoms that exit the ZS field with velocities
of ∼ 10 m

s or less (This effect is also visible in Figure 3.11b).
Final design consideration that is useful to address is the light absorption in the beam.

Assuming an ideal slower profile, the scattering rate for an atom following the path would be
Rscatt =

ηΓ

2
s

1+s and the time of flight through the slower is:

tscatt =

√
2mL
Fscatt

=

√
4mL
ℏkηΓ

1+ s
s

. (3.30)

If we assume that the flux of atoms interacting with the Zeeman slower is F = 1011 atoms
s

(e.g. from Figure 2.7), then the total rate of scattering of photons is:

Rph = FRscatttscatt = 6×1015 (3.31)

while the photon flux available in the slowing beam with PZS = 100 mW is:

Rav =
PZSλ

hc
= 2×1017 (3.32)

which still estimates the absorbed fraction at only ∼ 3% despite the flux value used in this
calculation being a very safe overestimate.
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3.4.3 Implementation

The Zeeman slower coil system consists of a set of six independent parts. Firstly, the bias coil
and a pair of profile coils create the main profile of the slower field. The profile coil is divided
into two sections as our implementation assumes a ‘spin-flip’ configuration, characterised by
the presence of a zero-field point along the length of the slower. This coil layout requires
only about a half of the maximum magnitude of the magnetic field compared to an equivalent
non-‘spin-flip’ slower. Furthermore, as the field goes back to zero after the end of the slower,
this assures that the slow atoms are kept off-resonant after the slower, avoiding excessive
slowing in the region between the ZS and the MOT.

The main coils are augmented with a compact end coil at the entrance to the MOT
chamber, that was added to translate the end of the slowing region closer to the MOT position
after issues with loading were observed (described in detail in Subsection 3.4.4). Finally,
a pair of rectangular compensation coils on either side of the MOT chamber provides the
possibility of cancelling the field offset and gradient that originates from the Zeeman slower
at the centre of the MOT. The details about the geometry of the main coils are given in Table
3.3. All these coils are made up from 1 mm coated copper wire24. The bias/profile coil
system was wound directly onto the vacuum tube, that also accommodates water cooling for
the coils. This was done on a lathe in the machine workshop, and the winding layers were
glued with heat resistant epoxy resin25. The compensation coils are wound on 50 mm by
120 mm rectangular brackets, with 24 (12) windings in front of (behind) the MOT chamber.
The full drawing of the coils along with the calculated field profiles that they create is shown
in Figure 3.12.

Layer / Length [mm]

1 2 3 4 5 6 7 8 9 10 11 12

Bias 420

Profile 1 (neg.) 282 257 230 200 168 134 98 61 20 20 20 20

Profile 2 (pos.) 114 94 75 62 37 37 37 37 24

End (pos.) 19 19 19 19 19 19

Table 3.3 Zeeman Slower Coil Geometry - The design originates from [70]

24Insulation coating is Polyester 200/polyamide-imide rated up to 212 ◦C
25Electrolube ER2223, rated up to 180 ◦C
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Fig. 3.12 Zeeman Slower Coils and Fields - a) The spatial layout of the Zeeman slower coil system
showing the profile coils (1 - blue, 2 - orange), the bias coil (green), the end coil (red) and the pair
of compensation coils (violet). b) The calculated longitudinal magnetic field components created
by individual coils from the system. c) The total calculated Zeeman slower magnetic field with the
inset focusing on the region around the MOT position (black dot). For reference the coil currents
corresponding to the example field profile given in b) and c) are Ibias = 4.0 A, Iprof1 = −2.2 A,
Iprof2 = 2.3 A, Iend = 7.4 A, Icomp1 =−6.9 A, Icomp2 = 0.9 A.
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Fig. 3.13 Zeeman Slower Optics - The Zeeman slower beam is created using a three-lens system
that provides the tunability of the beam radius between 2 mm and 8 mm while keeping the beam
approximately collimated along the length of the chamber. The polarisation is set to be circular after
the final mirror using the PBS cube and a pair of wave plates.

If we fit an ideal ZS field profile to the predicted field profile of the coils installed in our
system, the profile and bias fields would take the values Bbias = 12.5 G

A × Ibias +95 G
A × Iprof

and Bprof = 230 G
A × Iprof.

The slowing light beam is delivered to the experiment through an optical fibre, and the
delivery optics that sets the size and polarisation of the beam is shown in Figure 3.13. The
system is designed such that it can produce nearly collimated beams with waist radii ranging
from 4mm to 6mm that can be easily tuned. The maximum optical power that can be directed
into the chamber is 100mW.

3.4.4 Optimisation and Results

The first step in setting up the Zeeman slower is aligning the beam through the vacuum
chamber. The beam size was adjusted using the three-lens system after the fibre, and the
waist radius was measured to be within 5% of the desired 4.0mm at positions corresponding
to the start and the end of the ZS region. The polarisation was then set to be circular using
the pair of wave-plates mounted in the path of the beam. As the mirrors alter the polarisation
that is not purely S or P oriented, and the goal is for the polarisation to be circular after
the last reflection, a metal mirror was inserted before the chamber to mimic the effect of
the in-vacuum mirror during this operation. The alignment was performed using the two
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Fig. 3.14 Zeeman Slower Velocity Distribution - Fluorescence measurements taken using a probe
beam tilted 2.5° into the atomic beam in the MOT chamber. The Zeeman slower causes the atoms to
form a peak in the velocity distribution, that is then translated to slower velocities by tuning the field
profile. The total flux contained in the peak drops as the progressively slower atoms splay out further,
hitting the walls of the chamber. This was subsequently improved by installing the End coil

periscope mirrors, mounted immediately prior to the chamber. In order to aid the alignment
process, a camera was directed into the cross with viewports in the HV section of the chamber,
providing a view of the fluorescence induced by the ZS light incident on the atoms in the
beam. Given the very long path length of this beam (> 1m from the second periscope mirror
to the oven-side of the ZS tube), a high degree of accuracy is required when performing this
alignment26.

We used fluorescence imaging with a tilted 583 nm beam to measure the velocity distri-
bution after the Zeeman Slower. The details about this technique are provided in Appendix
C, and here we use both the ‘Top’ and ‘Side’ beams described in the appendix. Figure 3.14
shows an example of the ‘Top’ beam measurements where the final velocity of the slow peak
in the distribution is tuned using the currents in the coils (Bias and Profile 2, the End coil
current is zero):

As Figure 3.14 clearly shows, the flux contained in the slowed peak clearly starts dropping
as the atoms are slowed further. The reason for this is the splaying out of the atomic beam
caused by the increasing relative contribution of the transversal velocity as the longitudinal
velocity is decreased. The end of the Profile 2 coil is positioned 65mm from the end of the

26The effects of poor alignment are visible in Figure 3.16.
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Fig. 3.15 Zeeman Slower Side Beam Measurements - A higher resolution measurement using
a beam that is tilted 57° into the atomic beam. The blue signal represents a Zeeman slowed flux
distribution obtained without resorting to the End coil, having a final velocity of 15 m

s . The effect
of the End coil is demonstrated here by comparing the two peaks for which the velocity was further
reduced either using only the bias field (orange signal) or by turning on the End coil (green signal). The
losses are reduced by postponing the final slowing until the End coil, hence reducing the transversal
spreading of the beam. Additionally, by integrating the area under the curves, we can estimate the flux
of the slow (v < vMOT

c ≈ 8 m
s ) atoms at ∼ 5×107 atoms

s for the case with the End coil. The actual MOT
loading rate we measure (see Figure 4.13b) is approximately five times lower, but the flux estimate
done here should be taken with caution, due to calibration errors.

ZS tube27, so atoms with average transversal velocity of ∼ 1 m
s slowed down to ∼ 10 m

s
longitudinally would see their rms waist increase by 6.5mm, leading to a large portion of the
atoms hitting the walls of the ZS tube (ID = 8mm). Additionally, as the atoms have to cover
another 100mm from the end of the ZS tube to the MOT capture region, even some of the
atoms that make it through the ZS tube will eventually evade the MOT. This was reflected
in comparatively poor loading of the MOT, only reaching the atom numbers in the low 107

range.
In order to mitigate for this problem, we wound an extra coil (otherwise referred to as the

‘End’ coil) at the end of the ZS tube, within the narrow region between the water cooling
connection and the MOT chamber. As the centre of this coil is only 20mm away from the
end of the tube, this allowed us to use the main set of ZS coils (Profile 1/2 and Bias) to
slow the flux peak to a higher velocity, and then introduce a final kick towards the very low

27In order to allow space for the water cooling tube connection and the vacuum chamber flange bolts
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velocities in the region of the End coil, shortening the distance over which the atomic beam
would expand. The atomic flux measurements directly demonstrating this effect are shown in
Figure 3.15.

As the final measure of quality of the slowing process is the MOT loading rate, we can
directly compare the scenarios with and without the end coil. The comparison is shown in
Figure 3.16, with the MOT number after 15s of loading. While this figure demonstrates the
effect of the end coil on MOT loading, the velocity profiles are not the representative of the
best configuration that we have achieved. The ZS laser beam seems to be misaligned resulting
in a portion of the atoms being unaddressed. This will be treated at the next opportunity for
doing maintenance which consists of a tedious alignment process.

Another possibility for solving the issue of the transversal expansion of the beam, that
has been implemented by some research groups, includes a pair of slowing beams that would
implement a final decelerating kick just prior to the MOT [45, 82]. Analogously to the end
coil approach, the ZS is then used to slow the atoms to a finite velocity at which the splaying
is not extreme, and these beams would then be used to lower it further, below the capture
velocity of the MOT.



68 Laser Cooling on the Atomic Beam

Fig. 3.16 Zeeman Slower velocity distribution and MOT loading - Flux in the atomic beam after
emerging from the Zeeman slower resolved over longitudinal velocities for a ZS configuration without
(a) and with (b) the end coil. The coloured correspond to five different bias currents resulting in
progressively slower atoms in the MOT region (solid black line shows the distribution without the
Zeeman Slower). The insets show atom numbers present in the MOT after 15 s of loading, directly
reflecting the loading rate. The configuration without the end coil suffers from a significant drop-off
in the atom number due to lateral spreading at the end of the slower. Note that the performance of the
Zeeman slower was also plagued by poor alignment at the time of the measurement, resulting in a
significant portion of the atoms not experiencing slowing.



Chapter 4

Narrow-Line Magneto-Optical Trap

With the slowing on the atomic beam implemented, the stage in the cooling sequence that
follows next is the magneto optical trap (MOT). From this point onwards, it is beneficial
to use the narrow, yellow transition for laser cooling, for its low Doppler temperature of
TD = 4.6µK. By implementing the MOT on this transition, we managed to cool down
the atomic cloud to as low as 10µK. Apart from the low temperatures, sufficiently tight
confinement and stable and consistent spatial manipulation of the cloud are also required to
optimise the atomic cloud for subsequent loading into the optical dipole trap.

4.1 Principle of Operation

The magneto-optical trap combines the Doppler and the Zeeman effect to harness the light
scattering force for trapping and cooling simultaneously. It is implemented by superimposing
counter-propagating near-resonant laser beams with a magnetic field gradient. In the most
common configuration, also used in our experiment, one pair of beams is vertical (z-axis),
and the remaining two pairs are in the horizontal plane - all being mutually orthogonal.
The magnetic field gradient is generated using a pair of coils in the quasi anti-Helmholtz
configuration and takes the form of a quadrupole field:

B(x,y,z) = G
(
−1

2
x− 1

2
y+ z

)
(4.1)

where G =
∣∣∣∂B

∂ z

∣∣∣ is the magnitude of the quadrupole field gradient. The primary function of
the quadrupole field is to introduce a spatially varying Zeeman shift to transitions between
atomic states. For a pair of levels |g⟩ and |e⟩, with orbital angular momentum projection
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quantum numbers mg and me, this shift is equal to:

δB =
µBB
ℏ

(ggmg−geme) (4.2)

where gg and ge are the Landé projection factors for the two states. Note that a positive sign
of δB corresponds to the laser being blue-shifted w.r.t. the transition. We use the 583 nm
narrow-line transition for the MOT, where the ground state has Jg = 6 and the excited state
has Je = 7. As listed in Chapter 1, the Landé factors for these two states are gg = 1.163801
and ge = 1.195. For a MOT operating on the lowest lying Zeeman state in the ground
state manifold (mg =−6), the Zeeman shift factors for the three types of transitions can be
calculated from Equation 4.2 and are provided in the Table 4.1.

mg→ me −6→−7 −6→−6 −6→−5

Designation σ− π σ+

δB
2πB

[MHz
G

]
1.93 0.26 -1.41

Table 4.1 Transition Zeeman Factors - for the three different types of transitions from the ground
state via the 583 nm transition.

Another manifestation of the atom-field interaction is the position-dependent magnetic
force onto the atoms. As each atom carries a magnetic dipole moment µ = µBggmg and is
subjected to a field gradient, there is a net force of

F =−µ∇ |B| (4.3)

acting on the atom, accounting for the fact that the dipole direction is always aligned with
the B-field vector. Since the atoms are in a high-field seeking state, this effect contributes
with some anti-trapping. Along the vertical direction in the region below the centre of the
MOT, this leads to an effective gravity field strength of:

g′ = g+G
µ

m
. (4.4)

One peculiarity of narrow-line MOTs is the vertical sagging and the accompanying bowl-like
appearance. The understanding of the vertical position dependence on MOT parameters can
be drawn from a simple model where the atom interacts only with the bottom MOT beam
[47]. Assuming this, the balance of gravity and the light scattering force onto an atom (at
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rest) along the vertical direction can be written as (using Eq F.1):

ℏkΓ

2
s

1+ s′+ 4δ 2
loc

Γ2

= mg′ (4.5)

where δloc represents the local detuning of the atom, given by:

δloc = δ0 +δB = δ0 +Gzβσ− . (4.6)

From the force balance equation, one can then obtain the local detuning required for an atom
to satisfy it:

δloc =−
Γ

2

√
ηs− s′−1 (4.7)

where we define η = ℏkΓ

2mg′ . Combining the above equations, one obtains the expression for
the equilibrium position:

zeq =−
δloc−δ0

βσ−G
. (4.8)

While in this regime, most of the cooling originates from the bottom beam (from here on, we
also assume s = s′ for the same reason), and the velocity damping coefficient can be readily
extracted [83]:

αz =−
1
m

∂F(z)
scatt

∂vz
=

2ℏk2
√
(η−1)s−1
msη2 (4.9)

along with the effective trapping frequency:

ωz =

√

− 1
m

∂F(z)
scatt

∂ z
=

√
2ℏkGβσ−

√
(η−1)s−1

msη2 . (4.10)

Further to this, the diffusion coefficient in the MOT is shown to be (see Appendix F, also
[57, 83]):

Dz =
ℏ2k2Γ

2η
(4.11)

leading to the equilibrium temperature of :

Teq =
Dz

kBmα
=

ℏΓηs
4kB

√
1

(η−1)s−1
. (4.12)

The regime where the atoms only interact with the bottom beam is only valid for suf-
ficiently large detunings. If both vertical beams are included, we can see that the sagging
only sets in when the detuning is significantly larger than the linewidth of the transition. As
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Fig. 4.1 cMOT Position and Local Detuning - Calculated for s = 2 and the field gradient of 8 G
cm . a)

Equilibrium vertical position of the MOT cloud as a function of the laser detuning. For detunings
that are comparable to the transition linewidth, the light force is able to support the MOT close to
the origin. Once the force profiles of the top and the bottom beam separate in frequency space, the
cloud position will trail the bottom beam force profile as it moves in the −z direction (depicted on the
two insets) b) Local detuning of the atoms in the cloud as a function of the laser detuning. For small
detunings the three types of transitions (σ−, π and σ+) are not mutually detuned as the atoms are
located in the vicinity of the field zero. Once vertical sagging sets in, the three transitions drift apart,
opening the possibility for a spin-polarised MOT, given that the atoms will preferentially interact with
the σ− bottom beam.

figure 4.1b shows, sagging is required for the three transitions to become detuned, making it
a prerequisite for spin polarisation.

For a MOT in the sagging regime it is also possible to estimate the volume occupied by
the cloud using a simple set of approximations. The boundary within which the atoms are
constrained by the light force is approximately defined by the resonance condition applied to
stationary atoms:

δ0 = |B|βσ− (4.13)

which, assuming the quadrupole field profile from Equation 4.1, represents an ellipsoidal
surface:

x2 + y2 +4z2 =
4δ 2

0

G2β 2
σ−

= R2
0 . (4.14)

Due to the gravitational pull, the atoms will occupy the bottom portion of this region and
the characteristic height of the cloud can be estimated from equating the gravitational and
thermal energy scales, i.e. h = kBT

mg′ . The approximate volume of the cloud then takes the
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Fig. 4.2 Compressed MOT Cloud in the Trap - The figure shows a compressed MOT cloud with the
theoretical ellipsoidal surface of constant force drawn from Equation 4.14 (The size of the ellipse is
calculated from the light and field parameters while the position is adjusted freely to align it with the
cloud).

form:
V =

2π

3
h2 (3R0−2h) . (4.15)

This formula predicts VMOT = 6×10−9m3 and VcMOT = 6×10−12m3 if parameters typically
used in our experimental sequence are used 1. The latter prediction seems to underestimate
the realistic size, as it can be deduced by comparing it to Figure 4.2, which shows the
compressed MOT cloud along with the predicted force profile based on the parameters.

Another useful estimation that can be drawn from a similar simplified model is that of
the MOT capture velocity. Assuming that the atom approaches along the x-axis with velocity
v, and interacts only with the ±x MOT beams. In order to emulate the situation from our
experiment, where the incoming atoms do not enter the chamber along one of the MOT beam
directions, but rather interact with components from both horizontal pairs, each incident
at a different angle to the atomic beam, the interaction is limited to a 3 cm wide region
around the origin, and the light intensity obeys a Gaussian distribution with a waist radius of
wx = 1.5 cm. The equation of motion takes the form:

m
d2x
dt2 =

ℏkΓ

2


− s

1+ s+
4δ 2

x,v
Γ2

+
s

1+ s+
4δ 2
−x,−v
Γ2


 (4.16)

where the detuning δx,v now encapsulates both the Zeeman and Doppler shifts:

δx,v = δ0 +δB +δD = δ0 +
G
2

xβσ−+ kv (4.17)

1G = 8.3 G
cm ; sMOT = 50; scMOT = 0.2; δMOT =−12 MHz and δcMOT =−3 MHz.
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Fig. 4.3 Capture Velocity Estimation - a) Dependence of the capture velocity on the light intensity,
expressed through s, maximised over the other parameters (detuning and field gradient). b) The
capture velocity for s = 55 over different field gradients and detunings. The dark region in the lower
left corner is caused by the sharp cut-off of the MOT intensity at the edges of the cooling region.

and the saturation parameter reflects the Gaussian intensity distribution s = s0 exp
(
−2 x2

w2
x

)
.

This equation can be integrated numerically to obtain an estimate of the capture velocity.
The free parameters that can be accessed experimentally are the bare laser detuning, δ0, the
gradient G and the light intensity, here represented through s. The results of the numerical
simulation are shown in Figure 4.3. In the presented results, the detuning and the field
gradient are constrained to ranges that are experimentally accessible, while the light intensity
is varied over a wider range, for demonstrative purposes. We see that in the ideal scenario,
assuming the largest experimentally achievable value of s = 55, we can expect the capture
velocity of the MOT to be about 9 m

s .

4.2 583 nm Laser

The yellow laser system is primarily designated for the MOT, with the plan to also employ it
in the Bragg diffraction setup in the future, as described in Section 5.5. A diode laser with a
tapered amplifier and a frequency doubling cavity2 provides up to 700 mW of light, which
is more than sufficient for the operation of the MOT, given the low saturation intensity of

2Toptica DL-TA-SHG-Pro
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Fig. 4.4 583 nm Laser Distribution Optics - All focal lengths are in millimetres. Fibre Ports: SP (1
& 2) = Spectroscopy; MOT = Magneto-Optical Trap.

the 583 nm transition of 0.13 mW
cm−2 . The layout of the optical system is depicted in Figure

4.4. This setup employs three AOMs3 to independently control the frequency offsets of the
MOT light and the two beams used for Modulation Transfer Spectroscopy. In an alternative
locking setup employing shelving spectroscopy, we only use the light from the SP-1 fibre.

The arrangement of the polarizing beam splitters in the setup is made such that any
spurious reflections from either of the AOM systems or fibres cannot find a direct path to
any of the other fibres. This was done after the observation that these back reflections, either
from the MOT branch or the other spectroscopy branch can cause noise in the MTS locking
setup that decreases the quality of the lock, sometimes destroying it altogether. Similarly,
reflections in the opposite direction from spectroscopy branches into the MOT system can
have detrimental effect onto the lifetime of the atoms in the trap.

32 × Gooch & Housego AOMO 3080-125 Acousto-Optical Modulator at 80MHz; Gooch & Housego
AOMO 3200-125 Acousto-Optical Modulator at 200MHz
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4.3 Spectroscopy and Laser Stabilisation

As the main purpose of this laser system is cooling in the magneto optical trap operating on a
narrow atomic transition (Γ = 2π×190 kHz), it is essential to tightly stabilise its frequency.
Depending on its spectral characteristics, any laser frequency noise would lead to either
heating or positional jitter in the trap. Our main locking scheme in this laser system so far
used to be modulation transfer spectroscopy, but due to the lack of an adequate replacement
for the hollow cathode lamp that reached the end of its lifespan, alternatives had to be
found. We attempted switching to an alternative locking technique - shelving spectroscopy
[84] - but the frequency stability turned out to be inferior to the MTS locking setup. A
permanent solution was found in an Ultra Low Expansion (ULE) optical cavity, which will
be implemented in the weeks following the submission of this thesis.

Fig. 4.5 Modulation Transfer Spectroscopy Setup (with probe-pump offset) - a) The setup used
for locking the 583 nm laser to the atomic transition. The probe and the pump beams are supplied
from different AOMs via two fibres introducing the possibility of a frequency offset between them
to reduce the contribution of spurious reflections to interference noise. b) An example spectroscopy
signal from the 583 nm transition. The inset presents a zoom in on the 166Er error signal, in this case
having the slope of 132 mV

MHz .
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4.3.1 Modulation Transfer Spectroscopy

The simplest version of the setup, such as the one described in Section 3.2 that is used for
locking the 401 nm laser, is sensitive to noise that originates from spurious reflections along
the path of the pump beam interfering with the probe light. Given the strict requirements
for the quality of the lock that are imposed on this laser system, the locking system needs
to be optimised on all fronts. This issue can be mitigated by introducing a frequency offset
between the two beams, which shifts the interference noise in the frequency spectrum, while
leaving the useful signal at the modulation frequency [72]. This is implemented by drawing
the pump and the probe beam from two different AOMs, allowing for their frequencies to be
tuned independently. The setup with this tweak implemented is shown in Figure 4.5a, along
with an example of a recorded spectroscopy signal in Figure 4.5b.

Due to Heraeus discontinuing their model of the see-through HCL4, and the inability
of the other HCL that we sourced to match the desired performance (and initially, failure
to provide a measurable signal), we were prompted to try locking both lasers to a single
spectroscopy cell. The setup used is essentially an overlay of the two previously shown
MTS systems (Figures 3.2 and 4.5), and it is shown in Figure 4.6. We use a set of filters and
dichroic mirrors to overlap the two wavelengths in the HCL and through the EOM, and then
to split them again for detection. This approach worked in principle, but was problematic for
a number of reasons. Firstly, the exact shape and slope of the yellow (narrow-line) locking
signal was dependent on the intensity of the blue laser beams, leading to increased noise in
the yellow signal. Additionally, the optimal density of sample atoms differed greatly for the
two transitions, with the blue signal favouring lower densities due to strong absorption, while
the yellow signal favoured higher densities. Since the setup from Figure 4.5 remained as the
only viable option for locking the yellow laser based on the available frequency references,
the blue laser locking was migrated to the modulated fluorescence spectroscopy method
described in Subsection 3.2.2. Ultimately, with the Heraeus HCL reaching the end of its
lifetime, we briefly attempted the shelving spectroscopy method outlined below, and then
decided to switch to an ultra-low expansion (ULE) cavity5 as the long term solution for this
locking setup. This will also lead to a tighter lock, enhancing the MOT positional stability
and lowering the ultimate achievable temperature.

4See Section 3.2 for details.
5From Stable Laser Systems
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Fig. 4.6 Modulation Transfer Spectroscopy Setup (dichroic version) - a) Setup trialled for locking
both the 401 nm and the 583 nm lasers to the respective atomic transitions using a single Hollow
cathode lamp. The yellow light is supplied via a pair of fibres with a frequency offset between the
pump and the probe, while the blue light enters at a single frequency. The two wavelengths are merged
and separated using a 50:50 beam splitter and dichroic mirrors. b) An example spectroscopy trace on
the yellow transition with the blue locked to the respective transition of the 166Er isotope. The inset
contrasts the error signal distorted by resonant blue light (solid line) with the bare signal obtained
when the blue light is absent or non-resonant (dotted line). The distortion results in a considerably
smaller slope, 45 mV

MHz as opposed to 87 mV
MHz in this example, that cannot be restored by changing

the phase. c) Blue error signal for a low HCL current setting (5 A). d) Blue error signal for a high
HCL current setting (10 A), at which the dichroic setup needs to be operated, showing the damping of
peaks corresponding to abundant isotopes (166Er, 167Er, 168Er) due to absorption.
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4.3.2 Shelving Spectroscopy

Owing to its narrow linewidth, spectroscopy methods on the 583 nm transition are sub-
stantially more difficult to implement than the ones on the broad 401 nm transition. This
was reflected in the overall difficulty even to observe a spectroscopy signal on the narrow
transition using the atomic beam as the spectroscopic medium. Taking into account that the
scattering rate would be smaller by a factor Γ583

Γ401
and also that the light would simultaneously

resonantly address fewer atoms, as few as another factor of Γ583
Γ401

, the overall signal can be

up to
(

Γ401
Γ583

)2
= 2.4×104 times weaker. Inspired by the approach of [84], we have set up a

system where the atoms are excited by the yellow light, but the resulting populations are ’read
out’ using blue light, leading to a stronger signal. Unlike the setup in reference paper, the
pump and the probe beam cannot be spatially separated in our scheme, because the lifetime
of the narrow-line excited state, τ583 = 5.4µs is too short for the atoms to cover the distance
between the two beams. Instead, we completely overlap the beams, which still induces a
dependence between the intensity of the fluorescence signal from the 401 nm probe beam on
the frequency of the 583 nm pump beam. Similarly to Subsection 3.2.2, the pump light is
modulated at 20 kHz and a lock-in detection technique6 is used to extract the signal from the
probe beam fluorescence (Figure 4.8). While the obtained locking slope is comparable to the
one produced by the best iteration of the MTS setup (Figure 4.5), we suspect that the issue
with this method lies in the narrower locking bandwidth originating from the constraints of
the lock-in detection method7.

6Implemented using the Zurich Instruments HF2 lock-in amplifier
7The modulation frequency is limited by the response of the AOM driver, which in turn sets an upper limit

on the filter bandwidth that can be used after the demodulator.
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Fig. 4.7 Shelving Spectroscopy - The fluorescence spectroscopy method that addresses the atoms
with the light at the wavelength corresponding to the narrow transition (yellow) and then probes
the populations using the broad transition (blue laser). Since the yellow laser light is frequency
modulated, the modulation is transferred to the atomic level populations, and consequentially into the
blue fluorescence signal. This is then detected using a lock-in amplifier, leading to a signal exemplified
in Figure 4.8.

Fig. 4.8 Shelving Spectroscopy - The signal from the shelving spectroscopy used for locking the
yellow laser. The steepest locking slope that we managed to obtain from this system while keeping
the signal to noise ratio as low as possible is 96 mV

MHz .
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4.4 Implementation of the MOT

Being an intermediate stage in the cooling sequence, the main role of the MOT is to prepare
the atoms for transfer into the optical dipole trap (ODT). Ideally, we wish for a maximum
number of atoms at the lowest temperature possible, with good positional stability, to
eventually assure high and consistent phase-space density in the ODT. The number of atoms
loaded is a result of interplay of the MOT capture velocity, and the Zeeman slower efficiency.
Upon compression of the MOT, the temperature is primarily set by the light intensity and the
stability of the laser frequency. Finally, the positional stability, which is crucial for repeatable
loading into the dipole trap, is linked to laser frequency stability and light intensity and
polarisation fluctuations in the MOT beams. As it will be laid out below, this latter condition
proved to be crucial for consistent transfer.

4.4.1 Experimental Control

Fig. 4.9 Fibre Cluster and MOT Beam Delivery - a) The input light is brought from the experiment
via a long optical fibre and then split 6-ways using an array of PBS cubes and half-wave plates. The
fibre cluster also includes a monitor photodiode at the input. b) Each of the MOT beams is launched
from the optical fibre into a single plano-convex lens, resulting in a 33 mm waist diameter beam. The
polarisation is set using a polariser, mounted such that it can be rotated together with the fibre, and a
quarter-wave plate, ultimately yielding a circular polarisation after the pair of steering mirrors.
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Apart from the Zeeman slower parameters that control the flux in the atomic beam, the
performance of the MOT is also governed by the magnetic fields (quadrupole gradient field
and offset field), the laser detuning and optical powers in the different MOT beams. The
magnetic fields are created by the set of coils mounted on the MOT chamber, for which the
technical details were laid out in Section 2.2, and powered by supplies that can be controlled.
The laser light for the MOT is processed using a double-pass AOM setup which has the
ability to control both the frequency offset and the light intensity.

On the experiment table, the light for the MOT is split 6 ways into individual beams using
a home made fibre cluster (Figure 4.9a). Each fibre is then routed towards a MOT beam
launching stage that consists of a polariser and a quarter-wave plate, followed by a 150 mm
focal length lens, collimating the beam to the diameter of 33 mm and simultaneously cutting
off the light outside this diameter with an iris, blocking the light that would hit the viewport
edges.

We have up to 180 mW of laser power available at the input to the fibre cluster, and
that translates to the peak intensity of 5.6 mW

cm2 (or, alternatively s = I
Isat

= 45) averaged over
the six beams. All experimental sequence parameters relevant to the MOT are controllable
through the computer control software, except for the power balance between the beams that
can only be tuned manually within the fibre cluster.

4.4.2 Experimental Sequence

Every experimental run starts with turning on the TC, ZS and MOT laser light, and ramping
of the magnetic field coils. The Zeeman slower is kept on for tLoad, typically set to 15 s.
Following loading, the Zeeman slower light and coils are turned off, and a hold time of up
to 1 s is implemented for the sloshing in the cloud caused by the changing magnetic field
to dampen out. The MOT parameters are then ramped in order to simultaneously compress
and cool the cloud, which makes it more appropriate for transfer into the ODT. An example
sequence, with realistic parameters is shown in Figure 4.10.

During loading, it is beneficial to keep the light intensity at the practical maximum, as it
assures the maximum capture velocity possible, and also, the laser detuning should be set to
a sufficiently red-shifted value, such that the cloud sags significantly below the trap centre
(Figure 4.11a), ideally just below the ZS laser beam. This keeps the atoms away from the
blue light that reduces the lifetime of the cloud, and also, keeps them resonant only with the
σ− transition and dominantly with the bottom MOT beam, resulting in the spin polarisation
of the cloud without the need for additional optical pumping.

In order to approach the theoretical cooling limit set by the Doppler temperature, the
light intensity needs to be ramped down (see Equation 4.12). As this also affects the vertical
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Fig. 4.10 MOT Loading Sequence - The MOT loading process is started by ramping up the currents
in the ZS and MOT quadrupole coils while simultaneously turning on the laser light in the MOT and
ZS. We typically load for tload = 15 s at the maximum available intensity of MOT light, I ≈ 50Is and a
detuning of δMOT =−11 MHz, roughly corresponding to −70×Γ583. Once the loading is completed,
the ZS light and coils are turned off, and after a 1 s long hold time (the cloud typically receives
a small ‘kick’ from the varying magnetic fields upon the turn-off of the ZS coils), the MOT light
frequency and intensity are ramped in parallel to cool and compress the MOT. The intensity is reduced
to 0.2Is while the detuning is brought to δcMOT =−3 MHz (≈−15×Γ583) as any further ramping of
either parameter leads to atom loss (Figures 4.15 and 4.14). At the same time, we introduce an offset
magnetic field vertically, to raise the cloud to the height of the optical dipole trap beam.
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Fig. 4.11 MOT and cMOT - a) A photograph showing the MOT cloud during loading, taking up a
characteristic oblate and diffuse shape and sagging below the centre of the trap due to gravitational
sagging; b) The cloud in the late stage of the compression towards cMOT, making it more compact
and closer to the centre of the chamber. The fluorescence is still visible, but the total power in the
beams is considerably reduced by this point.

position of the cloud, causing it to shift downwards if no other parameters are changed, a ramp
of the laser detuning to the blue is required to counter this. In parallel, the frequency ramp
serves to compress the cloud through bringing the force profiles from opposing beams closer
in frequency. The range through which the frequency can be changed is constrained by the
requirement to keep the π and σ+ transitions far detuned, maintaining the spin polarisation in
the MOT. Any further raising of the cloud, required for levelling the compressed MOT with
the ODT should be done with a magnetic field offset, shifting the centre of the quadrupole
field upwards. This stage in the MOT sequence bears the name compressed MOT (cMOT),
and a representative example is shown in Figure 4.11.

Beam A1 (Bottom) A2 (Top) B1 B2 C1 C2

Peak I/Isat 30 20 55 55 55 55

Table 4.2 Table of MOT Beam Powers - Peak saturation intensities in the six MOT beams. The
Bottom beam (A1) has a reduced power as a consequence of the optimisation. The Top Beam was
then also tuned down for the balance along the vertical direction to be roughly restored (although this
is of limited importance as the vertical axis is inherently asymmetric due to gravitational sagging).
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4.4.3 Optimisation and Performance

MOT Loading - Maximising N

Optimisation for the maximum loading number consists of finding a good combination of
the MOT beam power balances and the loading laser detuning. During this process, we
constrained the powers in the four horizontal beams to be equal and only varied the power
balance in the vertical branch. In general, the system seemed to favour a weaker bottom MOT
beam, which can be explained by the fact that the loading favours clouds that sag below the
ZS laser beam, known to reduce the lifetime of the cloud. If this was to be accommodated
with solely the laser detuning, then the burden of capturing the atoms from the incoming
beam is shifted towards the outer regions of the horizontal beams, where the intensity is
lower, which yields fewer atoms overall. By reducing the intensity in the bottom beam, the
vertical equilibrium position is lowered without compromising the capture velocity.

Fig. 4.12 MOT Loading Frequency - showing a clear maximum in the number of atoms loaded
reached for a detuning of δMOT ≈−65×Γ583, corresponding to about 12 MHz. These results are in
good accordance with the simple loading model outlined in Figure 4.3. The parameters used in this
run were

∣∣dB
dz

∣∣= 8 G
cm and beam powers listed in Table 4.2

Figure 4.12 shows number of atoms loaded into the MOT over tload against the loading
frequency. Results are in good accordance with the simple loading model outlined in Figure
4.3 predicting that there will be a well defined maximum in the dependence. The sharp roll-
off at large negative detunings predicted by the calculation is not observed, as the geometry
of the model is oversimplified. On the other hand, it correctly predicts that the loading
maximum (stemming from maximised vc) is achieved at ≈−60×Γ583 for the field gradient
of 8 G

cm .
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Fig. 4.13 MOT lifetime and loading rate-a) Lifetime measurement where the MOT was loaded for
15 s followed by a variable hold time. The orange line represents the exponential decay fit to the data
yielding a lifetime of τMOT = 31 s (orange line). b) The number of atoms in the MOT was measured
after different loading times and the data was fitted with the solution of the appropriate rate equation
(see text), leading to the loading rate value of R = 8.8 ·106 s−1 (orange line).

Once the loading was optimised, the MOT loading rate and lifetime were measured.
To extract the lifetime of the MOT cloud the number of atoms remaining in the trap after
different holding times was recorded (Figure 4.13a ). Fitting the exponential decay function
N = N0e−

t
τMOT to the data yields the lifetime of τMOT = 31 s. Similarly, by fitting the

loading rate equation N = Rτload(1− e−
t

τload ) to the dependence of the number of atoms in
the trap following different loading durations (Figure 4.13b ) we obtain the loading rate of
R = 8.8 ·106 s−1 and the loading time constant τload = 9.5 s, ultimately yielding the limit for
the loaded number of atoms of N0 = Rτload = 8.4 ·107.

The losses are caused by the collisions with the background gas and through light-assisted
molecule formation between Er atoms themselves. In our trap, we reach8 peak densities
of up to 5 · 109cm−3 in the MOT during loading, and 5 · 1012cm−3 upon compression.
The two-body loss rate constant for erbium can be expected9 to be of the order of β ∼
10−11 cm3s−1, yielding the expected loss timescales of τMOT,2b (βnMOT)

−1 = 20 s and
τcMOT,2b (βncMOT)

−1 = 20 ms. While these estimates give shorter lifetimes compared to
what has been measured, they suggest that light-induced two-body collisions must be factored

8Assuming NMOT = 5×107 and using the volume estimates based on Equation 4.15 and numbers quoted
there.

9Based on the equivalent values available for dysprosium [47, 85], which has similar values for all relevant
parameters.
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in, especially in the case of the cMOT, where it they are expected to be the dominant loss
mechanism. Regarding the collisions with the background gas, a classical scattering theory
approach [86, 87] predicts the loss rate to pressure scaling for a given component (labelled i)
of the background gas to be:

ΓMOT,i = 6.8
pi

(kBT )
2
3

(
Ci

mi

) 1
3

(Dm)−
1
6 (4.18)

where, pi and mi are the partial pressure and the atomic or molecular mass of the back-
ground gas component and Ci is the van der Waals coefficient for the collisions between the
background gas particles and the cloud atoms; T ≈ 300 K is the background temperature
and D is the trap depth. Expecting H2 to be the dominant contributor in the background
gas, and taking D = kB ·2 K and Ci = 150 a.u. (1 a.u. = e2a5

0)10 this equation would require
pH2 = 8.5 ·10−10 mbar to explain the lifetime cited in Figure 4.13. This value is considerably
larger than both our pressure estimate from Appendix A and the readings on our ion pumps.
While there are uncertainties in the input parameters to the above model, and this can change
the answer by a factor of up to two, this can only be taken as another confirmation of the role
of the light-assisted two-body molecule formation. The only remaining possible contributor
to loss of atoms could be the leak light in the MOT beams or from the surroundings of
the chamber, but we rank that as highly unlikely. All in all, the real quality factor is the
lifetime itself, and it is certainly long enough for the purpose of conducting experiments with
quantum gases.

Compressed MOT (cMOT) - Minimising T

The function of the cMOT is to simultaneously cool and compress the atomic cloud. Com-
pression is primarily governed by the detuning ramp, which was rationalised in Section 4.1,
showing that the volume of the cloud is decreased by tuning the laser closer to resonance.
The limit of how far the ramp can go is ultimately determined by the local detunings of the π

and σ+ transitions that will compromise the spin purity of the cloud and also lead to losses.
Figure 4.14 shows how the spin purity and the population of the cMOT are affected by the
final frequency of the cMOT ramp. The trap maintains the atom number and unique spin
polarisation for detunings up to −15×Γ583. The Figure 4.14a shows the density distribu-
tions after the cloud is let to fall with a magnetic field gradient applied, in a measurement
that corresponds to a Stern-Gerlach experiment. For frequencies that are too close to the

10The dependence of the pressure estimate on these parameters is very weak so only rough estimates were
taken. In the case of Ci a number, only values for alkali metals were available from [87], so a value similar to
the one for Rb and Cs was used
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Fig. 4.14 cMOT Frequency - The measurement of purity of the spin polarisation of the cMOT cloud
depending on the final frequency in the ramp showing the second moment of the density distribution
along the vertical as a result of a Stern-Gerlach measurement of spin purity (a), and the remaining
atom number in the MOT following the ramp (b). As the trends on both plots, along with the snippets
showing the density profiles suggest, extending the ramp too close to the resonance mixes in other
spin states, leading to inelastic scattering and atom loss.

resonance, different spin states become spatially resolved by this measurement which is also
reflected in the vertical extent of the cloud. Figure 4.14b also shows losses that are brought
about by scattering between atoms in different states.

The cooling that happens in parallel with compression is a consequence of the reduction
in intensity. Figure 4.15a shows that the measured temperatures are in good accordance with
the model given by Equation 4.12. We do not reach the theoretical minimum of the model as
the laser intensity and frequency noise lead to heating and atom losses. At the same time,
lowering the laser intensity decreases the depth of the trap, causing losses once it becomes
commensurate with the thermal energy scale of the cloud (Figure 4.15b). The temperature
of the cloud is measured using the Time-of-Flight (ToF) method, whereby the atoms are
released from the trap and imaged after a varying time interval. The clouds are then fitted
with a Gaussian function and the temperature is extracted from the temporal evolution of the
cloud widths. Assuming the cloud initially also has a Gaussian distribution, the Gaussian
width (here defined as e−

1
2 radius) should obey:

σ
2(t) = σ

2
0 +

kBT
m

t2 (4.19)

hence the temperature can be extracted from the slope of σ2(t2).
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Fig. 4.15 cMOT Temperature - a) A comparison of the MOT temperature measurements at different
final light intensities (blue markers) with the theoretical prediction given in Equation 4.12 (dashed
orange line). The temperature values used are averages of the two estimates from the ToF method
using the horizontal and the vertical cloud size. b) Shows the remaining atom number in the MOT
following the ramp, showing that once we reach I

Isat
= 0.2 further ramping leads to atom loss. This

still allows us to approach the temperatures of ∼ 10µK.

In order to measure the lifetime in the cMOT, we implement a hold time interval after
the compression ramp, after which the atoms are released and imaged. Figure 4.16 shows
different lifetimes measured for cMOT clouds of different densities. We generally require
tightly trapped clouds in order to better match the spatial profiles of the cMOt and the ODT
cloud, but this comes at the cost of the lifetime.

MOT Stability - Reaching Consistent Transfer into ODT

In order to load into the ODT that has the cross section of 30 µm (V) by 100 µm (H) it is
necessary to maintain good spatial overlap during transfer. Given that the vertical extent
of the cMOT is about 100 µm, we need to keep any positional jitter below that length scale.
Generally, this jitter originates from the laser frequency and intensity noise, where the
frequency noise should only significantly contribute to vertical motion due to symmetry.
Unexpectedly, we observed pronounced jitter in both directions, being particularly severe
horizontally (Figure 4.17), which could not be correlated with powers in individual MOT
beams that we consequentially started monitoring. The problem was diagnosed after an
observation that the amount of jitter is strongly dependent on the vertical position of the cloud,
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Fig. 4.16 cMOT Lifetime - Lifetime of the atoms in the cMOT, measured by varying the hold time
in the trap following compression. The three data sets were taken for three different values of the
magnetic field gradient, resulting in clouds of different size. The runs with higher gradient values
yield denser clouds, which enhances the light-assisted 2-body loss rate, shortening the lifetime.

being different from region to region. This prompted us to check the purity and uniformity
of polarisation in the beams, and it was observed that certain beams have regions where
the polarisation strays from circular and any time-dependent fluctuations originating from
the optical fibres are more pronounced there. The root of this behaviour was found in the
mirrors11 that were used to steer the beams into the chamber, with some of them being faulty,
making the light polarisation non-uniform across the beam12. Once these have been swapped,
the stability improved significantly. This resulted in the vertical direction showing more
pronounced position jitter, which is probably due to laser frequency stability, and should
be mitigated by the imminent introduction of the ULE cavity as the locking method for the
MOT laser.

Performance under typical use

In daily running of the experiment, we typically load the MOT for 15 s, leading to NMOT =

6 ·107 atoms being loaded. The cMOT ramp is performed as described in Section 4.4.2, with
the final light intensity being ramped from I

Isat
= 45 to I

Isat
= 0.2, yielding NcMOT = 6 ·107

atoms at the temperature of T = 13µK.

11Thorlabs BB2-E02 2" dielectric mirrors
12A stripe-like region of different polarisation was measured across the middle of the beam.
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Fig. 4.17 MOT position variation - measurement of the centre position of the compressed MOT
cloud after a short time of flight, before (orange markers) and after (blue markers) replacing the set of
mirrors in the horizontal MOT beams. Standard deviations of the two data sets are σOLD

x = 88µm
and σOLD

z = 47µm before the mirror replacement and σNEW
x = 12µm and σNEW

z = 35µm after the
replacement. The residual vertical jitter is either coming from the laser frequency stability, or some
remaining polarisation issues.



Chapter 5

Optical Trapping, Transport and
Dynamical Potentials

The electric polarisation induced by non-resonant light fields incident on atoms and the
accompanying shift in energy provides for a powerful tool for manipulating atomic clouds
and the motional states of constituent atoms. In our experiment, several techniques are
used based on this phenomenon. Firstly, the system of optical dipole trap beams creates
attractive potentials for trapping and transporting the atoms. Then, the hollow, cylindrical
beam will make up a repulsive wall that creates the optical box trap in conjunction with an
attractive light sheet. Finally, we also plan to implement a Bragg spectroscopy setup that
employs a dynamical light shift potential1. These techniques become particularly valuable
for trapping species in magnetically non-trappable (high-field seeking) states, such as erbium
atoms polarised in the J = 6, m j =−6 state following the MOT. In this chapter, I describe
the methods we use, and lay out their foundations. Additionally, I rationalise the choices
made for the particular wavelengths selected for the these applications.

5.1 Light Shift Potentials

When atoms are subjected to a non-resonant light field, their potential energy changes through
the AC-Stark effect. That effect can be simply explained through the ‘dressed states’ picture,
where the eigenstates of the atom in the light field are original eigenstates mixed with small
proportions of other states. All the states corresponding to transitions for which the laser is
blue (red) detuned increase (decrease) the energy of the atom. For a two level system, with

1Instead of the usual pair of counter-propagating beams
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the far detuned light field, the energy shift is given as:

∆E =
ℏΩ2

4∆
=− 1

2ε0c
Iα . (5.1)

Where Ω is the Rabi frequency of the light field for this transition and ∆ is the detuning.
However, most often, the magnitude of the shift of a given atom species is stated in terms
of the light intensity, I, and polarizability, α . Additionally, as the goal is to keep the light
non-resonant and prevent it from exciting the transition, which leads to heating and losses,
with the scattering rate given by:

Γloss =
Ω2Γ

4∆2 (5.2)

where Γ is the transition line width, needs to be maintained at a negligible level. Fortunately,
the scattering rate falls off faster with detuning, compared to the light shift potential, so this
becomes just a matter of selecting a sufficiently large detuning.

5.1.1 Polarizability of Erbium

In general, the polarizability accounts for the effect from all transitions and has a tensorial
character, due to the anisotropy of the electronic orbitals and transitions being polarisation
dependent. Therefore, three components - scalar, vector and tensor - are required to fully
describe the dependence of polarizability on geometry [88, 89]:

αtot(ω) = αscal(ω)+E cosθk
mJ

2J
αvect(ω)+

3m2
J− J(J+1)
J(2J−1)

3cos2 θp−1
2

αtens(ω) (5.3)

where (J,mJ) are the quantum numbers of the electronic state the atom is in (6 and -6 for
the absolute ground state of erbium in magnetic field), and E is the ellipticity parameter of
the light polarisation. The polarizability also depends on the angle between the quantisation
axis and the polarisation of the light field, θp and the angle between the quantisation axis
and the propagation direction of the light beam, θk. For erbium, in the case when both of
these angles are 90°, the polarizability is shown in the Figure 5.1. From this graph, it is clear
that an attractive optical dipole trap (ODT) can be successfully created using wavelengths in
the 1030 nm region, and a repulsive optical box potential may be set up using light close to
372 nm.

2a.u. here represents the atomic units of polarizability 1 a.u. = 4πε0a3
0 = 1.65×10−41 C2 m2 J−1
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Fig. 5.1 Total atomic polarizability of erbium - here shown for θk = θp = 90°, which is the
configuration we will use in the ODT1 trap. We highlight the two wavelengths we plan to use for
trapping - 1030nm for the optical evaporation, transport and planar confinement in the box trap, and
372nm for radial confinement in the box trap. The polarizability values extracted from the above
model at these wavelengths are 178 a.u. and −779 a.u. respectively2. This figure is reconstructed
using the data from [89]

5.1.2 Harmonic Trapping in Focused Gaussian Beams

For an elliptical Gaussian beam, the intensity takes the form:

I(x,y,z) =
2P

πwx(z)wy(z)
exp

[
−2

(
x2

w2
x (z)

+
y2

w2
y (z)

)]
(5.4)

where the beam waists along the two axes vary according to wx,y(z) = w0x,y

√
1+ z2

z2
Rx,y

and

zRx,y =
πw0x,y

λ
are the Rayleigh ranges along the principal directions. The effective Rayleigh

range of the beam, i.e. the distance from the focus along the propagation axis over which the
peak intensity reaches half of the maximum value, is:

zReff =

√
2

w4
0x +w4

0y

πw2
0xw2

0y

λ
. (5.5)
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The trapping potential in the vicinity of the focus can be expanded using a Taylor series to
obtain the harmonic approximation:

U(x,y,z) =− 1
2ε0c

Re(α)
2P

πw0xw0y

[
1− 2x2

w2
0x
− 2y2

w2
0y
− z2

z2
Reff

]
(5.6)

From here, the associated trap frequencies can be extracted, showing their relation to the
beam geometry:

ωx =

√
4αP

mε0cπw3
0xw0y

, (5.7)

ωy =

√
4αP

mε0cπw0xw3
0y

, (5.8)

ωz =

√√√√√αPλ 2
(

w4
0x +w4

0y

)

mε0cπ3w5
0xw5

0y
(5.9)

and full trap depth is given by:

U0 =
1

2ε0c
Re(α)

2P
πw0xw0y

. (5.10)

5.2 1030 nm Laser System and the Transport Setup

Upon reaching temperatures of about 10µK in the MOT, we need to resort to evaporative
cooling to finally reach quantum degeneracy. Concurrently, we require a mobile trap to
perform the transport of the atomic cloud into the glass science cell. For both of these tasks,
we opted for a red-detuned optical dipole trap, employing a 1030 nm laser. The choice of
the wavelength was primarily motivated by the availability of single frequency lasers with
sufficiently high power in the vicinity of 1064 nm, and we decided to use a wavelength
somewhat lower than that as it was reported that 1064 nm traps have shorter lifetimes when
the fermionic isotope 167Er is used3.

3We do not plan to use 167Er at this point, but as this design constraint was simple to implement and it
keeps the door open for introducing the fermionic isotope in the future, we avoided the lasers in range between
1050 nm and 1070 nm.
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5.2.1 Optical System Design and Realisation

The light for the optical dipole trap is sourced from a 45W, single-frequency doped-fibre
laser4. The power is currently split into two beams, as shown in Figure 5.3 The main
trapping beam (ODT1) and the auxiliary beam to form a crossed trap in the MOT chamber
(ODT2). The intended function of ODT2 is to provide stronger longitudinal confinement
after the atom transfer from the MOT and during the first stages of pre-transport evaporation.
The optical system delivering the ODT1 beam incorporates a pair of focus-tunable lenses5

that allow independent tuning of the trapping beam’s focal position and waist [90]. The
design goal for this system was to provide focal point translation over a distance of 40cm
and waists between 25µm and 45µm along this trajectory [91]. In addition, we have the
ability to further increase the horizontal waist of the trapping beam, up to three times,
by dithering the modulation frequency of the appropriate AOM in the setup. We aim for
a 30µm× 30µm waist beam for the ODT1 (extending to about 100µm in the horizontal
direction when dithering is applied). Assuming that 35 W of optical power reaches the focus,
we predict the trapping frequencies of (ωx, ωy, ωz) = 2π × (1.8 kHz, 1.8 kHz, 18 Hz)
and a trap depth of kB×700µK. When dithering is applied, the trap frequencies change to
(ωx, ωy, ωz) = 2π×(1.1 kHz, 350 Hz, 5.3 Hz), while the trap depth reduces to kB×230µK.
The second beam, ODT2, approaches in the plane perpendicular to the propagation of OD1,
at an angle of 7◦ to the vertical. It has a 150µm waist along the transport direction, a 50µm
waist orthogonally and a maximum power of 5W (limited by the optical fibre). With these
parameters, it can provide up to 400 Hz of additional trapping across the long direction of
the ODT1 (i.e. transport direction).

The transport system is designed such that the pair of tunable lenses can shift the focus of
the beam along the trajectory between the MOT chamber and the science cell. The functional
part of it is shown in Figure 5.2 and consists of two tunable lenses at separation l1 and a fixed
lens with focal length f = 400 mm next to the chamber at the distance l2 from the second
tunable lens. The focal lengths of the two tunable lenses, f1 and f2 can be freely tuned over
a range from −500 mm through infinity to 333 mm. In the special configuration with the
distance between the second tunable lens and the last, fixed lens is set to the focal length of
the fixed lens (i.e. l2 = f ), the focus position and the beam waist vary as (for more details,
see [90, 91]):

w f =
f | f1|w0λ√

( f1− l1)
2

π2w4
0 + f 2

1 λ 2l2
1

, (5.11)

4Azur Light Systems ALS-IR-1030-50-I-SF
5EL-16-40-TC-NIR-5D from OptoTune
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x f = f − f 2

(
1
f2
+

( f1− l1)π2w4
0 + f 2

1 λ 2l1
( f1− l1)

2
π2w4

0 + f 2
1 λ 2l2

1

)
(5.12)

where w f is measured w.r.t. to the last lens. Resulting from the above constraint imposed
on l2, the waist radius at the focus does not depend on f2, implying that transport at fixed
waist can be performed by solely tuning the focal length of the second tunable lens. Given
the design parameters, this system satisfies the desired goals (transport over 40cm at waists
between 25µm and 45µm), even when the finite apertures of the tunable lenses and the
chamber viewport are counted in.

Fig. 5.2 Optical Transport Scheme - We implement the optical system design proposed in [90]
which incorporates a pair of focus tunable lenses (‘TL 1’ and ‘TL 2’) to produce a trapping beam with
adjustable waist and focus position. The design also specifies the constraint l2 = f , under which the
operation of the system is described by Equations 5.11 and 5.12. As a result, the beam waist is only
tuned with TL 1, enabling simple implementation of transport at constant waist.
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Fig. 5.3 1030 nm Laser System - The light is supplied by a 45 W single-frequency laser, and
after passing through a telescope/spatial filtering stage, it is directed through an AOM. The AOM
is set up in a single-pass configuration where it serves a double purpose - to switch and control the
intensity of the light and to deflect the position of the ODT1 beam focus in the horizontal, transversal
direction. This dithering functionality is employed to modulate the trap position at a high frequency
(∼ 30 kHz), creating an effective potential for the atoms with a broader waist in one direction. The
tunable lenses, used to control the focal position waist of the ODT1 beam, are mounted on the
vertical breadboard to minimise aberrations caused by the effect of gravity onto the liquid and the lens
membrane. Additionally, a second trapping beam is created from the undeflected component of the
beam after the first AOM. This beam (ODT2) is sent through a second AOM and an optical fibre to
enter the chamber at 7° to the vertical, and provide additional confinement for the atoms in the MOT
chamber. The system also incorporates a set of photodiodes for laser power control and stabilisation,
picking off the signal from specular reflections off half-wave plates in the system (not pictured as
major improvements are planned for this subsystem to mitigate for polarisation drift effects).
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5.2.2 Performance and Observed Issues

Following the enhancements to the positional stability of the MOT cloud (end of Subsec-
tion 4.4.3), we have achieved relatively steady transfer efficiency into the ODT1 trap, of
approximately 20%, as shown in Figure 5.4a. The improvement in consistency indeed seems
correlated with the enhanced stability of the MOT, based on the evidence offered in Figure
5.4b.

Fig. 5.4 Transfer Consistency - a) shows measured transfer efficiency from the MOT into the ODT,
both before the MOT mirrors were changed (orange markers) and after that (blue markers) depicting
the improvements brought about by better stability and uniformity of MOT light polarisation. Data
was taken in two different runs for each of the two sets, discriminated by marker filling. In b), we
demonstrate the correlation between the transfer efficiency and the measured horizontal position of
the MOT cloud (labelled x, measured by looking at the atoms remaining in the falling MOT cloud
after not being transferred).

As achieving good transfer efficiency relies on good spatial overlap between the ODT and
the cloud, we make use of the spatial dithering to temporarily broaden the beam along the
horizontal direction. The transfer efficiency with and without dithering applied, as a function
of the focal point position is shown in Figure 5.5. The effect of dithering is an improvement
of transfer by about 40%, and it can also be seen that the undithered beam reaches maximum
transfer efficiency away from the focus, indicating that the waist is too narrow at the focus
itself.

By performing time-of-flight measurements on the ODT cloud itself, we measured the
temperatures after transfer, and the lowest achieved value in the trap with the dithering off
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Fig. 5.5 Transfer to ODT at Different Positions - The figure shows the transfer efficiency dependence
on the focal point position in cases with (blue markers) and without dithering (red markers). When
dithering is applied, the trend shows a single peak in the centre of the region, whereas, without
dithering, the transfer peaks when the MOT cloud is located at either side of the ODT focus.

was 50µK. Assuming the ideal trap frequencies of 2π × (1.8 kHz, 1.8 kHz, 18 Hz) and
N = 107, we estimate that we reach typical phase-space densities of up to:

PSDODT = N
(

ℏ
kBT

)3

ωxωyωz = 5×10−4 . (5.13)

If the ODT is loaded slightly off-centre, the atom density will exhibit damped centre-
of-mass oscillations. These can be used to estimate the trapping frequency of the ODT
(Figure 5.6a), yielding ωx = 2π×2.8 Hz. In this dataset with dithering enabled, the expected
longitudinal trapping frequency, inferred from measured beam waists, is ω ideal

x = 2π×5.3 Hz.
Additionally, as the cloud adjusts to the shape of the ODT, being loaded from the cMOT
cloud that is significantly narrower longitudinally, a sloshing mode is excited, which can also
be observed in the evolution of the cloud width (Figure 5.6b).

Apart for the discrepancy between the expected and measured trapping frequency, another
issue that was noticed was the drifting of the focal point position due to thermal effects in the
lenses caused by the high optical power that is incident on them. We observed this behaviour
both by directly imaging the evolution of the beam profile at different positions along the
beam [91] and also in the behaviour of the atomic cloud (Figure 5.7).
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Fig. 5.6 ODT Dynamics Following Transfer - a) The evolution of the centre position of the cloud
after transfer into the ODT from the MOT. The focus of the ODT beam is offset from the MOT, leading
to a centre-of-mass oscillation, that is fitted with a damped harmonic oscillation with a frequency of
ωx = 2π×2.8 Hz and a decay time constant of τx = 770 ms; b) The evolution of the Gaussian width
of the cloud, also showing damped harmonic evolution with a frequency of ωσ = 2π×5.1 Hz and a
decay time constant of τσ = 130 ms obtained from fitting.

5.2.3 Outlook and Proposed Alterations

The performance of our ODT trap seems to be plagued primarily by the poor axial confine-
ment provided by the ODT1 Beam. This results in clouds that are severely elongated along
the beam propagation axis, reaching waists of up to 2mm, rendering them unsuitable for
evaporation and transport.

We plan for further testing of the capabilities and improvements of the current setup,
including re-designing the tunable lens setup to gain on the axial confinement front at the
expense of the tuning range for the beam waist or attempting the implementation of better heat
management in the tunable lenses [92]. In parallel with this, alternatives for the liquid tunable
lenses are being considered. Currently available options are opting for the conventional
method based on a low-vibration translation stage [93], or switching to a Moiré lenses6

[94], a different type of tunable lenses, which are reportedly significantly more immune to
aberrations and thermal lensing effects.

6Produced by Diffratec
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Fig. 5.7 Drift of the ODT Cloud - Due to thermal effects in the tunable lenses, originating from
the high optical power in the ODT1 beam, the focal point of the trapping beam starts drifting after
∼ 500ms. This is reflected in the measurements of the centre position of the cloud shown in a) which
yield an approximate drift rate of 5 mm

s . Absorption images corresponding to these measurements are
also shown in b), giving a pictorial demonstration of the drift.

5.3 Optical Access to the Science Cell

The region around the science cell will be the place a number of optical systems will have to
be combined - just the bare experimental platform calls for the two beams comprising the
optical box trap, access for imaging and picking up and disposing the transport laser beam. On
top of that, we will continue to install various optical systems for probing and manipulation
of the atoms for the purpose of scientific experiments, with the Bragg spectroscopy being the
first example of such. Therefore, space management and optical access need to be organised
well. Figure 5.8 shows the planned layout for the optical box, imaging for both atomic
species and Bragg spectroscopy. In order to combine and separate the beams at different
wavelengths where required, we are implementing two long pass filters7 and one notch filter8.

As this design assumes that the tube beam for the optical box will share the projection
objective with the Bragg spectroscopy setup, the final design of the objective will have to be
adjusted such that it provides satisfactory performance at both 583nm and 372nm.

7BrightLine FF389-DI01-25X36X1.5 and BrightLine FF506-DI03-25X36 from Semrock
8LAS-042742 from Semrock
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Imaging of the atomic cloud will be performed using the Hammamatsu ORCA-Fusion
camera9 that has the capability of taking pairs of images in quick succession with a global
shutter, which is necessary for some dual-species experiments we have in planning.

Fig. 5.8 Science Cell Optical Setup - The preliminary blueprint of all optical systems around the
science cell, including the optical box potential (the 372 nm tube beam and the 1030 nm sheet beam;
see Section 5.4), the Bragg spectroscopy setup (see Section 5.5) and absorption imaging for both Er
and K. The imaging beams, Bragg spectroscopy and the box tubular beam all share a common optical
axis and the custom projection objective that corrects for optical aberrations originating from passage
through the 2.5 mm thick glass cell wall.

92304×2304 CMOS array
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5.4 Optical Box Potential

The optical system for generating a uniform trapping potential in the science cell will be a
combination of an elliptical Gaussian beam for vertical confinement, along with a hollow
repulsive cylindrical beam for in-plane trapping. The latter will be generated using 372 nm
light projected off a phase-only Spatial Light Modulator10. The approximate layout of this
optical system is shown in Figure 5.8 as a part of the full setup around the science cell.

Fig. 5.9 Optical Box Potential - A trap created by superimposing the attractive, hollow pseudo-
Laguerre-Gauss beam with a repulsive, high-aspect ratio elliptical sheet beam. Such a configuration
would produce a trap that can be modelled by a general power-law potential U(r,z) ∝ rn + γ2z2. The
plots in the lower left and upper right sections of the figure show the trapping potential profiles along
the two directions - simple harmonic trapping implemented vertically with the radial trapping potential
shown for three different cases of power-law exponents, leading to different wall steepness. Practically
achievable traps will have the steepness between n∼ 10−20.

The device that we utilise is a reflective, phase-only SLM, consisting of a reflective
pixelated screen, where a phase shift can be implemented independently across all pixels. A
Gaussian laser beam is directed at the SLM and the reflection is projected into a Fourier plane
using a system of lenses [22]. There are multiple options for SLM phase patterns resulting
in cylindrical beams [95], with the most common one being the simple phase winding11,

10Hamamatsu LCOS-SLM Model X13267-05
11Here, θ is the radial angle coordinate with respect to the centre of the screen
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∆φ = lθ , resulting in a pseudo-Laguerre-Gauss (pLG) beam with the intensity profile in the
Fourier-plane of:

ILG(r) =
r2

w2
0

e
− r2

w2
0
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I l−1
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2w2
0
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2w2
0

)]2

(5.14)

where In(x) is the modified Bessel function of the first kind12 and w0 is the Gaussian waist
that the beam would have in the focal plane if there was no phase modification by the SLM.
Other options outlined in [95] include the axicon and spiral axicon beams, that can produce
steeper traps with larger depth at the same power, but have a profile that is asymmetric around
the focus point, and additionally, the normal axicon beam is not fully dark in the centre of
the tube.

The trap steepness can be extracted by fitting a power law dependence rn to the radial
intensity profile of the beam. As the realistic profile is not a simple power-law, the exponent
that fits it best varies with the cut-off radius for fitting. The approach taken in [95] is to define
the fitting cut-off at the radius where the potential reaches 1/η of the peak value, and it is
shown that for η > 10 the fits will give a relatively well defined exponent. In the referenced
work, n ∼ 10 is obtained for l = 12. This method is appropriate as the atomic cloud will
typically have a temperature by an order of magnitude smaller than the trap depth, so the
fitting is then performed only across the region of the potential which the atoms explore.

For trap depth and size estimation purposes, the radius of the pLG beam for l≫ 1 can be
taken to be rl =

l
2w0 and its thickness is of the order ∆rl ≈ l

3w0. Therefore, we can roughly
estimate the trap depth for a given radius and optical power as13:

U0 =−
1

2ε0c
Re(α)

4P
π∆rl (2rl +∆rl)

. (5.15)

In order to create a kB×1µK deep trap of radius R = 30µm, we would require P≈ 7 mW
to be delivered to the focus, taking the value of polarizability of Re(α) =−779 a.u. from
Figure 5.1 (originally from [89]).

The sheet beam at 1030 nm will be generated from the same laser as the ODT/Tranport
beam, and will be projected into the science cell using a set of cylindrical lenses. The
intention is to have an elliptical Gaussian beam, with a large aspect ratio, and horizontal waist
much larger than the radius of the tubular beam. An example configuration we currently
have as a working version in the design would result in a beam with waists of wx = 500µm

12Caligraphic font used here to avoid naming confusion due to intensity also having the symbol I
13Assuming that all the power is distributed across a ring of inner (outer) radius of rl (rl + ∆rl), and that the

peak intensity is equal to twice the mean intensity.
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and wy = 11µm using a set of three cylindrical lenses and a input beam. Using equations
5.7 - 5.9 and erbium polarizability of 178 a.u. at 1030 nm from [89], we conclude that such
trap would have a depth of ∼ kB×2µK and vertical trapping frequency of ∼ 2π×300Hz
for 0.4 W of optical power. The residual trapping frequencies in the horizontal plane in this
come out as ∼ 2π×5Hz, and if we conclude that we need to reduce that for the trap to be
flat, we can increase the aspect ratio of the beam.

This all assumes that the atomic cloud is simultaneously levitated, as otherwise, gravita-
tional potential would greatly reduce the depth of the trap. Given the magnetic moment of
erbium in its magnetic ground state of µ = 6.98µB, a field with a gradient of:

G =
mg
µ

= 4.2
G
cm

(5.16)

would fully compensate for gravity.
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5.5 Arbitrary Optical Potentials and Bragg Spectroscopy

We plan to install an optical setup for projecting arbitrary intensity patterns onto the atoms
trapped in the box trap. The intended applications range from Bragg spectroscopy to stirring
and dynamic trapping potentials. This will be implemented using a Digital Micro-mirror
Device (DMD), an array of mirror-pixels that can be independently tilted into two different
positions and thereby reflecting an arbitrary pattern into either of the two directions.

5.5.1 Generation of Arbitrary Intensity Patterns

Our setup is designed around a DMD device with a 1920×1080 pixel array14. As shown in
Figure 5.10a, the incident light onto the DMD is provided in the form of a wide Gaussian
Beam, that fills the DMD screen. Since the tilting axis of the mirrors is at 45° with respect to
the vertical, and the two states are tilted at ±12° to the either side of the screen plane (Figure
5.10b-c), the input beam needs to approach from a direction that is out of the horizontal plane.
It is essential to have the DMD screen orthogonal to the optical axis, in order to have the
entirety of the screen in focus at once, when the pattern is projected onto the atoms. When
correctly set up, the light reflected from the pixels in the ‘ON’ state will be reflected along
the optical axis, whereas the ‘OFF’ pixels will send the excess light into a different direction
such that it can be disposed off (Figure 5.10d).

The pattern is projected onto the atoms through a series of lenses, constituting two
consecutive telescope stages with a total demagnification of approximately ∼ 1/80 and
diffraction limited spatial resolution of 2µm [96]. The first telescope also serves as a spatial
filtering stage, blocking the higher diffraction orders originating from the DMD screen due
to pixel grid periodicity. The second telescope consists of a long focal length lens and a
specially designed objective that serves to correct for any optical aberrations caused by the
passage of the converging beam through the glass wall of the science cell. This is done by
using a pair of meniscus lenses that cancel the resulting optical path differences between
different rays. Details about the design of the objective are laid out in Subsection 5.5.2.

Despite that the DMD can only project binary images, it is still possible to exploit the
finite resolution of the system and create grayscale patterns. In our system, the combination
of the pixel size of 7.6µm and the demagnification results in approximately Ngs = 20 pixels
being imaged across one resolution length scale. Consequentially, images from ∼ N2

gs pixels
will partially overlap, leading to spatial averaging. The final step in creating such grayscale
patterns is generating the binarised image for the DMD. The primary objective for any such
procedure is to keep the local average of the intensity (calculated over an area of Ngs×Ngs

14Model V6501 from Vialux
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Fig. 5.10 DMD Optical System - a) The projection optical system that produces the real-space
image of the illuminated DMD in the plane where the atoms are trapped. A large, ∼ 15mm waist
radius, laser beam is reflected off the DMD screen, launching the modulated intensity pattern through
the optical system. The demagnification optics consists of two telescope stages in series, yielding
net demagnification of ∼ 1/80. The first telescope has a spatial filtering stage, to eliminate higher
diffraction orders resulting from the screen pixelation, and the final constituent lens in the system is a
composite, aberration correcting objective, described in Section 5.5.2; b) Depiction of the ‘ON’ and
‘OFF’ states of individual DMD pixels, sitting at 12° in either direction to the plane of the screen.
Note that the mirrors can also occupy the flat, ’PARK’, position when not in use, or during the pixel
updating procedure. c) Geometry of a single pixel, showing the rotation axis being across the pixel
diagonal; d) Rendering showing a DMD in operation, projecting a word pattern "DMD" down the
optical axis, and dumping the excess light.

pixels) as close as possible to the desired pattern. Further to that it is desirable to maintain
maximum brightness and contrast of the pattern and to avoid regular patterns, such as parallel
lines or extended chequerboard patterns, emerging from the binarisation algorithm, as these
will lead to interference artefacts in the resulting image. The most widely used method
for binarisation, that fulfils the above requirements, is the Floyd-Steinberg algorithm [97]
depicted in Figure 5.11.

5.5.2 Design of the Projection Objective

In order to approach the diffraction limited regime, we need to compensate for the optical
aberrations caused by the passage of the light through the 2.0mm thick glass-cell wall. For
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Fig. 5.11 Floyd-Steinberg Algorithm - Method for binarisation of greyscale images through error
diffusion [97]. The algorithm traverses the image sequentially, applying simple thresholding to each
individual pixel, setting it to 1 if its greyscale intensity was in the upper half of the scale, and otherwise
to 0. The residual error resulting from this operation is then distributed across still unprocessed pixels
in the vicinity. The exact fractions for this error diffusion step vary between implementations, and
we opted for the simple option that distributes the residual over four nearest neighbour pixels, as
indicated above.

this purpose, we have opted for a composite objective constructed using four commercially
available lenses15, two of which are meniscus lenses, following the basic design idea from
[98]. A ray-tracing program [99] was used to assess the performance of different lens
combinations and to optimise the positioning of the optical components within the objective
[96, 100]. The resulting design, that was prototyped and tested in the cited master theses of
my colleagues, is shown in Figure 5.12. Theoretically, this configuration yields a diffraction
limited resolution of 2.0µm, with the geometric aberrations accounting for an additional
0.2µm towards the total point-spread-function RMS width.

As the aberration cancelling ability of the objective may be significantly reduced away
from the design wavelength, the final design will have to be adjusted such that the 372nm
optical box beam, that shares the same projection axis, is also focused without excessive
aberrations at the position of the atoms within the cell.

15From Thorlabs, part numbers and focal lengths shown in Figure 5.12
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Fig. 5.12 Projection Lens Objective - The prototype design for the objective, optimised using a
ray-tracing program. For 583nm light, the focal length of the objective is 48.3mm with a working
distance of 46.9mm. Best performance was achieved for an input iris diameter of 17.0mm (resulting
in NA = 0.18).

5.5.3 Bragg Spectroscopy

The Bragg spectroscopy method in this context represents a technique of probing the energy-
momentum excitation spectrum of a given system through two-photon, Raman-type processes,
that leave the constituent atoms in the same electronic ground state |g⟩, while imparting a
momentum q to it. An excited state |e⟩ is used as a mediator for this Raman process. The
conventional method for Bragg Spectrosopy involves a pair of counter-propagating or crossed
laser beams, with a frequency offset ω1−ω2 = ω between them [101–104]. Since the laser
beams typically have significant detunings w.r.t to the excited state in order to avoid exciting
a significant atomic population, the effects of the atom-photon scattering processes can be
equivalently described by the action of a light shift potential from the resulting intensity:

I(r) ∝ cos2
(

k1−k2

2
r− ω1−ω2

2
t
)

(5.17)

which represents a sinusoidal intensity pattern with wavelength λ = 2π

|k1−k2| with translational
velocity v = ω1−ω2

|k1−k2| . An alternative configuration to this would be to directly create such an
intensity pattern by modulating a single laser beam using the DMD [36, 105]. In essence,
the electric field of such a pattern would be identical to that of a pair of beams at frequencies
ω0 and ω0 +ω crossing at an angle θ = arcsin q

2k0
. The system state evolution can then
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Fig. 5.13 Bragg Spectroscopy Mechanism - a) The two-photon Raman-type transition that is
employed for Bragg spectroscopy. The atoms at rest in the ground state, |g,p1 = 0⟩, can be imparted
with a momentum and to a transferred to state |g,p2 = q⟩ via this process, without populating the
excited state |e⟩ significantly. While this is conventionally done with two crossed and frequency-offset
laser beams, it can be shown that the same process can be induced using a dynamic light shift potential
in the form of a moving sinusoidal intensity pattern (b).

be described equivalently using a three-level picture16 and a Raman process with a large
one-photon detuning ∆, as depicted in Figure 5.13. The sinusoidal pattern can be projected
onto the atoms either by directly imaging the pattern off the DMD [105] or by Fourier plane
holography [106, 36]. We opted for the direct projection method as the dynamic translation
of the pattern is simpler to implement in that scenario.

Provided that the one-photon detuning is much larger than the other energy scales that
govern the dynamics of the system, namely ∆≫

∣∣Ep2−Ep1

∣∣, ∆≫ |δ | and ∆≫ Ω1,2, the
evolution of the system can be well described through an effective two-level system with a
driving Rabi frequency of:

Ωeff =
Ω1Ω2

2∆
. (5.18)

In the the translated pattern scheme, both Ω1 and Ω2 are established from the mean pattern
intensity I0 as Ω1,2 = Γ

√
I

2Isat
. Therefore, the effective Rabi frequency is set by the beam

16Full description would require introducing the effect of all energy levels via the atomic polarizability.
Since we plan to implement the scheme in the immediate vicinity (∆ ∼ 1000×Γ) of the 583 nm transition,
considering only that level is a valid approximation.
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light intensity and the one-photon detuning:

Ωeff =
Γ2

4∆

I
Isat

. (5.19)

In practice, measurements will be performed by implementing a π-pulse of Bragg
spectroscopy light, that would coherently pump the atoms from |g,p1⟩ to |g,p2⟩ imparting a
momentum to them, followed by a time-of-flight interval that should lead to spatial separation
of the excited atoms from the remaining cloud. In order to decide on the magnitude of Ωeff,
there are two considerations that need to be taken into account. The pulse duration τπ = π

Ωeff

should be sufficiently short in order for the atom loss from the trap to be negligible during
the measurement. On the other hand, in order for the intensity pattern motion to be well
defined during the course of the pulse, the projection frame rate of the pattern needs to be at
least an order of magnitude higher than Ωeff. The DMD that is a part of our system has a
maximum frame rate of 10.3 kHz, therefore aiming for Ωeff = 2π×1 kHz as a design goal
satisfies both conditions. Assuming we select a one-photon detuning of ∆ = 2π×200 MHz,
and that the projection area17 is a circle of radius R = 100µm, the required optical power for
attaining this effective Rabi frequency would be 0.9µW.

In a similar consideration, the target range for the wave vector q needs to be accommo-
dated in the design. The accessible range of wave vectors needs to be sufficiently broad such
that it includes the roton feature. Drawing from Subsection 1.3.2 (and originally from [65]),
we expect the roton wave vector to be at kr ≈ l−1

z , where lz is the harmonic oscillator length
associated with the vertical confinement of the trap. In our experiment (see Section 5.4),
the trap frequency will be set to ωz ≈ 2π× 300 Hz, implying lz ≈ 1µm. Consequentially,
we should aim for a system that is able to create a pattern with a wavelength as short as
λmin =

2π

kr
≈ 6µm. The ultimate limit on the pattern wavelength is set by the imaging resolu-

tion, and since our projection objective provides the resolution of 2µm, we should be able to
reach up to approximately 3× kr when probing the spectrum.

17Such that it extends wider than the box trapping potential with Rbox ≲ 50µm



Chapter 6

Ground State Stability in a Box Trap -
Numerical Simulations

A consequence of the anisotropic nature of the dipolar force is the strong dependence of
the stability of trapped condensates on the trapping geometry. As each atom in the cloud
attracts a portion of the remaining atomic density that is within the conical domain around
the dipole axis, in some arrangements this can render atomic clouds unstable. This is the
case when the attractive component of the force is too strong for the repulsive interactions,
the confining potential and quantum pressure to counter this effect. A well known result is
that a bulk1, strongly dipolar gas (εdd ≥ 1) is unstable [63]. Furthermore, in the case of a
trapped gas, clouds that are more oblate w.r.t. to the axis of magnetic polarisation tend to be
more stable [33]. The subject of stability in harmonic traps in general has been extensively
investigated [33, 65, 107, 108]. Finally, another interesting observation for dipolar gases
trapped in box-like potentials is that, due to the long-range nature of the interactions, peaks
of atomic density tend to develop near sharp trap walls [109], affecting the homogeneity
of the cloud. This is in stark contrast with the behaviour of gases with contact interactions
only, where a perfect box potential is desired when pursuing a uniform density distribution.
As our experimental research goals2 call for a uniform quantum gas system with strongly
dipolar interactions (i.e. with pronounced roton-like nature of excitations - near the stability
boundary), the interest behind this numerical study lies in better understanding how to realise
such a system and potential implications towards experimental implementation of the optical
box trap.

1infinite, filling all of space
2e.g investigating phase transition dynamics in the context of Kibble-Zurek theory [110, 111] requires

uniform atomic density. See Section 7.3.2
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In this chapter, I report on the ongoing effort directed at investigating the effect of the
trap geometry on the stability against collapse and uniformity of the atomic cloud. Our
intended approach revolves around numerically finding ground states of the Gross-Pitaevskii
equation with dipolar interactions (dGPE) and testing them for dynamical stability using the
Bogoliubov-de Gennes formalism (BdG). The latter step is necessary, as we do the energy
minimisation assuming cylindrical symmetry, which does not take into the account any
angular density perturbations. We also constrain our effort to a particular class of power-law
traps, broadly mimicking the capabilities of our experimental setup design and, for now, to
the case of a purely dipolar gas with no contact interactions.

The presented results are preliminary, as we currently only have a working implementation
of the dGPE ground state solver, while the application of the BdG method for testing the
states for angular roton instability is under development. Nevertheless, this first insight
into the simulation results hints some interesting trends that are potentially relevant for the
implementation of future experiments with the optical box. We particularly find interesting
the effect that the box wall steepness has on the homogeneity of the atomic density, and the
implications for creating uniform clouds.

6.1 Numerical Simulation

The entirety of the simulation code is written in Python and it consists of scripts for finding
the ground state of systems described by the dGPE and for their subsequent testing for
dynamical stability. In the quest of finding the ground states of dGPE, we have implemented
both the imaginary time propagation method [112, 113, 95] and the conjugate gradient
method [114–117] for the ground state search. Here, I mostly focus on the conjugate gradient
method, and all the presented data is obtained with it. However, it should be noted that, as
a part of the testing process, we have thoroughly compared the results obtained from both
methods and found complete agreement. As the implemented calculations rely heavily on
the Fourier and Hankel transforms, conventions and definitions that we use, along with some
useful identities, are provided in Appendix G.

The implementation of the BdG formalism is still under way, but I will briefly touch
upon the key steps in using it for stability testing, pointing towards the relevant literature.
The procedure comes down to solving an eigenvalue problem for the linearised system
of equations representing the evolution of different BdG excitation modes. Whenever the
process yields imaginary eigenvalues for the excitation frequency, this indicates the existence
of a mode softened sufficiently to cause the instability. In this process, we employ the
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ARPACK package [118] available through the linalg.eigs functionality of the SciPy
library in Python.

6.1.1 Defining the System

The centrepiece of the simulation is the dipolar Gross-Pitaevskii equation (from Equation
1.13) that governs the dynamics of the system and determines its ground state properties:

iℏ
∂ψ(r, t)

∂ t
=

[
− ℏ2

2m
∇

2 +Vext(r)+
4πℏ2asN

m
|ψ(r, t)|2

+N
∫

Udd(r− r′)|ψ(r, t)|2d3r′
]

ψ(r, t) (6.1)

with the wavefunction being normalised to unity:
∫

V d3r|ψ(r, t)|2 = 1.
The dipolar interaction, for magnetic dipoles, is described by the equation:

Udd(r− r′) =
µ0µ̄2

4π

1−3cos2 (θ)

|r− r′|3 . (6.2)

The dGPE can be made dimensionless by introducing the length and time units of measure, xs

and ts and then further simplified by the appropriate choice of these units. The transformation
into the dimensionless form is performed by the substitutions:

r→ r
xs
, t→ t

ts
, ψ → ψ

x
3
2
s

. (6.3)

Applying these substitutions to the dGPE leads to:

i
∂ψ(r, t)

∂ t
=

[
− ℏts

2mx2
s

∇
2 +

ts
ℏ

Vext(r)+
4πℏasNts

mx3
s
|ψ(r, t)|2

+
Nµ0µ̄2ts
4πℏx3

s

∫ 1−3cos2 (θ)

|r− r′|3 |ψ(r, t)|2d3r′
]

ψ(r, t) . (6.4)

The first convenient selection of units is to fix ts =
mx2

s
ℏ which directly leads to:

i
∂ψ(r, t)

∂ t
=

[
− 1

2
∇

2 +
mx2

s
ℏ2 Vext(r)+

4πℏasN
xs

|ψ(r, t)|2

+
Nµ0µ̄2m
4πℏ2xs

∫ 1−3cos2 (θ)

|r− r′|3 |ψ(r, t)|2d3r′
]

ψ(r, t) (6.5)
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which now allows us to define the dimensionless contact and dipolar interaction strengths:

gs =
4πℏasN

xs
, D =

Nµ0µ̄2m
4πℏ2xs

. (6.6)

Finally, by absorbing the numerical coefficients into a dimensionless trapping potential
V (r) = mx2

s
ℏ2 Vext(r), and by defining Vdd =

1−3cos2 (θ)
|r−r′|3 we reach the final compact form of the

dGPE:

i
∂ψ(r, t)

∂ t
=

[
− 1

2
∇

2 +V (r)+gs|ψ(r, t)|2 +D
∫

V
Vdd(r− r′)|ψ(r′, t)|2d3r′

]
ψ(r, t) . (6.7)

Finally, the energy functional in the dimensional units is:

E[ψ] =
∫ [1

2
|∇ψ(r)|2 +V (r)|ψ(r)|2 + gs

2
|ψ(r)|4

+
D
2

∫
Vdd(r− r′)|ψ(r′)|2|ψ(r)|2d3r′

]
d3r (6.8)

An axially symmetric power-law trap, which is the type of the trapping potential that is
of interest to us, can be defined as (in dimensionless units):

V (r,z) =
1
2
(
rp + γ

2z2) (6.9)

which implicitly assumes xs = Rp, where Rp is the characteristic radius of the power law trap,
determined by the condition:

Vext
(
Rp,0

)
=Vext(0, lz) (6.10)

and lz =
√

ℏ
mωz

is the oscillator length of the vertical harmonic trap. The box radius can be
expressed in terms of the oscillator length along the z (harmonic) direction as:

Rp =
√

γlz (6.11)

For the purposes of visualising and presenting data, we also recall the dimensionless
quantity ν that is inspired by the definition in [108]. Here we define it using the inverse
relation - transforming ν to D:

D =
3π

1
2 Γ

(
1+ 2

p

)

16Γ

(
5
2 +

2
p

)
(

3
2

νγ

6+ 3
2 p

3p+4

) 3p+4
3p

(6.12)
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which is constructed by using the peak density in the Thomas-Fermi approximation in place
of the area density in the definition of ν in [108].

6.1.2 Calculation of the Dipolar Energy/Hamiltonian Term

By employing the convolution theorem the dipolar term in the Hamiltonian, given in the
Equation 6.2, can be rewritten in a more convenient form:

Ĥdip[ψ] = DVdd ∗ |ψ|2 = DF−1{F{Vdd} ·F
{
|ψ|2

}}
. (6.13)

Recall that the dipolar potential in the dimensionless units takes the form:

Vdd(r) =
1−3cos2 θ

|r|3
(6.14)

which can then be efficiently calculated using a Discrete Fourier Transform (DFT) The
Fourier transform of the dipolar potential can be written analytically, and takes the form:

Ṽdd(k) = 4π

(
cos2

θk−
1
3

)
(6.15)

where cosθk =
kz
|k| .

While this result allows for a faster calculation of the dipolar term, it introduces a
new issue - as the DFT assumes the transformed function to be periodic, there will be a
contribution to the overall dipolar interaction from the aliased images of the cloud outside the
grid domain. To mitigate for this, one can limit the range of the dipolar force by introducing
a cut-off, and make sure that a sufficiently large grid is used in the simulation [119, 113, 120].
The options for the cut-off, in terms of geometry are the spherical cut-off:

V S
dd(r) =





1−3cos2 θ

|r|3 if |r|< Rc

0 otherwise
(6.16)

with its Fourier transform given by:

Ṽ S
dd(k) = 4π

(
cos2

θk−
1
3

)[
1+3

cos(Rck)
R2

ck2 −3
sin(Rck)

R3
ck3

]
. (6.17)

This is a simple option, but can be inefficient in cases when the cloud has a large aspect
ratio, which would lead to the cut-off sphere encompassing a lot of empty space, and
consequentially the grid would be unnecessarily large along the vertical direction. The
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possible solution for this is using a cylindrically shaped cut-off region instead:

VC
dd(r) =





1−3cos2 θ

|r|3 if ρ < ρc and z < Zc

0 otherwise
. (6.18)

The Fourier transform of the cylindrically cut-off potential takes the form:

ṼC
dd(k) = 4π

(
cos2

θk−
1
3

)

+4πe−Zckρ
[
sin2

θk cos(Zckz)− sinθk cosθk sin(Zckz)
]

−4π

∫
∞

ρc

ρdρ

∫ Zc

0
dzcos(kzz)

ρ2−2z2

(ρ2 + z2)
5
2

J0
(
kρρ

)
(6.19)

which is a semi-analytic expression and requires a costly numerical evaluation every time a
grid is defined. This can be avoided in cases when the discrete Fourier-Hankel transform is
used, as it does not suffer from aliasing. In that case it is sufficient to implement the cut-off
along the vertical direction only, given by:

VV
dd(r) =





1−3cos2 θ

|r|3 if z < Zc

0 otherwise
(6.20)

and its Fourier transform:

ṼV
dd(k) = 4π

(
cos2

θk−
1
3

)

+4πe−Zckρ
[
sin2

θk cos(Zckz)− sinθk cosθk sin(Zckz)
]
. (6.21)

6.1.3 Spatial Discretisation

Exploiting the cylindrical symmetry of the system, enforced by the shape of the trapping
potential (Equation 6.9), we reduce the problem to a two-dimensional one when looking
for the ground state. Furthermore, we know that the ground state will be even around the
z = 0 plane, therefore all system quantities can be sampled only on one side of the plane,
and additionally, this allows for a discrete cosine transform (DCT) to be used in place of
the full DFT. The wave function Ψ(r,z) is then represented on a Nr×Nz grid, spanning the
region of [0,Lr]× [−Lz,0]. The grid is evenly spaced in the z-direction, whereas the spacings
along the radial direction generally take different values along the axis, as the sampling is
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governed by the discrete Hankel transorm (DHT), that is the equivalent of the DFT for this
grid geometry. Following the definitions from Appendix G, the grid point coordinates are
defined as rmn = (rm,zn), where:

rm =
αmLr

S
for m ∈ {0, . . . ,Nr−1} , (6.22)

zn =−Lz +
nLz

Nz−1
for n ∈ {0, . . . ,Nz−1} (6.23)

where αm represents the m-th zero of J′0, the first derivative of the zeroth order Bessel function
of the first kind - J′0, and S is a constant parameter originating from the implementation of
the DHT [121], and it takes the form:

S = 2|J−1
0 (ακ)|

√√√√1+
Nr−1

∑
n=1

J−2
0 (αn)J2

0

(
ακαn

JNr

)
(6.24)

where JNr is the Nr-th zero of J0(r) and κ = Int
(

Nr+1
4

)
. The grid spacings along the radial

direction are only significantly non-uniform across the several points closest to the origin,
while the outer portion of the grid has approximately evenly distributed points. Appendix
G provides further details about the grid geometry, including the definition of the inverse
space grid kmn =

(
km

r ,k
n
z
)

and mentions the interpolation methods for evaluating integrals
and derivatives with high precision.

The Fourier transform on this grid is a hybrid of the DCT along the z-direction and the
DHT along the r-direction. We use the mkl_fft Python package to implement the DCT3

with parallel computing. A parallelised implementation of the DHT was written by directly
implementing the recipe from [121] that is also presented in Appendix G, and using the
numba Python package to implement parallel vector and matrix operations.

The application of the BdG formalism that is anticipated in Subsection 6.1.6 will re-
quire the application of higher-order Hankel Transforms, to accommodate for the angular
dependence of the excitation wave functions.

6.1.4 Imaginary Time Propagation

In general, a direct evaluation of the propagator for a quantum system with the Hamiltonian
Ĥ

Û(t) = e−iĤ∆t (6.25)

3That does not come with a built in DCT function, but one can be readily constructed from mkl_fft.rfft
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is very computationally costly due to the fact that Ĥ consists of components that do not
commute - namely T̂ =−1

2∇2 and V̂ =V (r)+gs |ψ|2+Ĥdip[ψ], and also because the explicit
evaluation of T̂ in the position basis is challenging. Nevertheless, it turns out that the ansatz:

Ûsplit = e−
iV̂ ∆t

2 e−iT̂ ∆te−
iV̂ ∆t

2 (6.26)

approximates the full propagator Û with an error that is only third-order in ∆t.
The advantage of this method is that the e−iT̂ ∆t term can be evaluated in the inverse

(momentum) space, which allows for a significant code speed-up. The recipe for applying
this operator to a given state is:

e−iT̂ ∆t |ψ⟩= F−1
{

e−i∆t k2
2 F{|ψ⟩}

}
. (6.27)

6.1.5 Preconditioned Conjugate Gradient Method

The conjugate gradients method [114] is similar to the steepest descent minimisation, only it
does not necessarily follow the gradient during each step. Instead, additional information
about the energy landscape is drawn from the Hamiltonian operator to construct a set of
directions that would efficiently lead towards the minimum when applied consecutively. It is
motivated by the problem of minimising a quadratic functional.

This method is laid out in detail in references [115–117]. Every step in the procedure
starts by calculating the residual vector of the Hamiltonian eigenvalue problem in the Hilbert
space:

|rn⟩= Ĥ[ψn] |ψn⟩−⟨ψn| Ĥ[ψn] |ψn⟩ |ψn⟩ . (6.28)

Next, the descent direction is calculated using the formula:

|dn⟩=−P̂ |rn⟩−βn |pn−1⟩ (6.29)

where the βn is the projection factor that maintains the conjugacy requirement. There is
a number of recipes for defining it, and the most common one, called the Polak-Ribière
formula, is used here:

βn = max
(
0,β PR

n
)
, (6.30)

β
PR
n =

(⟨rn|− ⟨rn−1|) P̂ |rn⟩
⟨rn−1| P̂ |rn−1⟩

. (6.31)
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Finally, one needs to assure that the descent direction is orthogonal to the current state:

|pn⟩= |dn⟩−⟨ψn|dn⟩ |ψn⟩ . (6.32)

Now, as the descent direction is determined, the minimum of the energy functional along
that direction needs to be found. Practically we do that by writing the new wave function as:

∣∣∣ψ trial
n+1(θ)

〉
= cosθ |ψn⟩+

sinθ

∥pn∥
|pn⟩ . (6.33)

Note that the norm of the new function is automatically equal to unity when written in this
form. The energy functional is now minimised w.r.t. θ and this generates the wave function
in the next step:

θn = argminθ

{
E
[
ψ

trial
n+1(θ)

]}
, (6.34)

|ψn+1⟩=
∣∣∣ψ trial

n+1(θn)
〉
. (6.35)

The above algorithm will work fine without the preconditioner, i.e. with only P̂ = Î. On
the other hand, the references suggest using it, as it unleashes the full potential of the method.
The first suggestion, presented in references [115–117] and also used in the particular case
of finding the ground state of the dipolar gas in [122, 119], is the preconditioner based on the
kinetic energy operator, that is diagonal in the momentum space basis:

P̂T =

(
α[ψn]−

∇2

2

)−1

(6.36)

where the number α is evaluated using the current iteration of the wave function via the
equation:

α[ψn] = ⟨ψn| Ĥ[ψn] |ψn⟩ . (6.37)

This preconditioner reportedly becomes inefficient for large spatial size of the system or
strong interactions. Consequentially, the papers [115–117] define a preconditioner based on
the potential and interaction energies, that is diagonal in the position space basis:

P̂V =
(
α[ψn]+V + Ĥint [ψn]+ Ĥdip [ψn]

)−1 (6.38)

employing the same definition of α . The papers also point out that it is not useful to apply P̂V

on its own, as it performance deteriorates for high-resolution grids, but rather in a combination
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together with P̂T . This leads to three possibilities:

P̂V T = P̂V P̂T , (6.39)

P̂TV = P̂T P̂V (6.40)

and finally, the symmetrised version:

P̂S = P̂
1
2

V P̂T P̂
1
2

V . (6.41)

The final option should theoretically be a universally good choice according to the reference
papers.

6.1.6 Angular Roton Instability

As laid out in [122, 119], ground state clouds that assume concave, ‘red blood cell’ shaped
density distributions, are prone to angular roton instabilities. This is manifested through
the softening of one the angular excitations, pushing its energy below the energy of the
unperturbed condensate, seeding the instability. A direct consequence is that the energy
landscape minimisation techniques that do not account the angular degree of freedom will
overestimate the stability boundary in these cases. Hence, all these candidate ground states
need to be vetted using the BdG approach, to assure they are indeed stable. In this picture,
starting from the candidate ground state obtained from energy minimisation, Ψ0, here
assumed real, a trial excited state wave function is constructed following the same approach
as in Subsection 1.3.2:

Ψ(r, t) = [Ψ0(r)+δΨ(r, t)]e−iµt (6.42)

where µ is the chemical potential of the unperturbed system, and takes the form:

µ[Ψ0] =
∫ [1

2
|∇Ψ0(r)|2 +V (r)|Ψ0(r)|2 +gs|Ψ0(r)|4

+D
∫

Vdd(r− r′)|Ψ0(r′)|2|Ψ0(r)|2d3r′
]

d3r . (6.43)

The perturbation to the wave function is constrained to the form:

δΨ(r, t) = λ
[
u(r)e−iωt + v∗(r)eiωt] (6.44)
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when looking for a solution, and λ ≪ 1 is assumed4. The above ansatz can be trialled in
the time-dependent dGPE (Equation 6.7), leading to the following set of equations when
expanded up to first order in λ and with terms collected according to frequency components:

(H0−µ +C+2X)(H0−µ +C) f = ω
2 f . (6.45)

(H0−µ +C)(H0−µ +C+2X)g = ω
2g (6.46)

where f = u+ v and g = v−u. The two interaction operators C and X take the form:

Cφ(r) = gs|Ψ0(r)|2φ(r)+D
∫

V
Vdd(r− r′)|Ψ0(r′)|2d3r′φ(r) , (6.47)

Xφ(r) = gs|Ψ0(r)|2φ(r)+D
∫

V
Vdd(r− r′)Ψ0(r′)φ

(
r′
)
d3r′Ψ0(r) . (6.48)

The angular roton instability is established if the Equations 6.45 and 6.46 yield negative
eigenvalues as the solutions for ω2, implying imaginary values for ω . This analysis can be
performed in the cylindrical coordinate system, but trial functions corresponding to different
phase windings must be employed individually [122].

6.2 Results Analysis

The goal of this numerical investigation is to get a better understanding of the effect of the
trap geometry onto the shape and stability of the condensate ground state. We first look at the
case of a purely dipolar gas, with the contact interaction strength kept at zero, and we consider
trapping in a general power law potential (Equation 6.9). Three representative values of the
box exponent, p = 2, 6 and 20 are used in the initial analysis, representing harmonic trapping,
and box potentials of intermediate (soft-wall) and high steepness (hard-wall), respectively.
We also vary the strength of dipolar interactions D and the trap aspect ratio γ , and employ the
preconditioned conjugate gradient method [114–117] to find the ground state wave functions
and energies for each combination of parameters.

The results outlined below only deal with the stability to radial rotons and and all
candidate ground state wave functions with biconcave shape5 need to be further vetted for
angular roton instability. Additionally, the numerical methods need to be thoroughly checked
for robustness in the limit of large p and γ . Still, the data obtained so far reveals interesting
trends that are likely to persist despite future improvements to the simulation code. This data

4Also, the normalisation rule enforced for u and v is
∫

d3r
[
u2− v2

]
= 1

5i.e. having area density that does not monotonically decrease from r = 0 outward.
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hints that the stability boundaries of all power-law traps for γ → ∞ generally converge to
the same level as the infinite harmonically trapped planar condensate [108], at least if only
the angluar rotons are considered. At the same time, the higher power-laws seem to always
develop concave profiles close to the stability boundary, which might eventually lower the
actual boundary when the angular rotons are counted in. This would imply that it is the trap
wall that seeds the instability. Additionally, it appears that box traps with soft walls (p∼ 6)
generally produce the most uniform clouds at intermediate aspect ratios in the presence of
strong dipolar interactions. Therefore, it is clear that the steepness of the confining potential
determines whether the stability and excitation properties are dominated by the bulk density
of the gas (as it is the case for the flattened homogeneous gas [108]) or, instead, the effects
from the edges.

6.2.1 Stability Against Collapse

Given the anisotropic nature of the DDI force that makes it inevitably attractive for some
atoms, a cloud of dipolar atoms trapped in any trap will eventually become unstable with
increasing strength of DDI. In this investigation, we constrain the system configuration
to a spin polarised, purely dipolar (gs = 0) gas, trapped in the ‘pancake’ trap, as defined
in Equation 6.9. Working in dimensionless units (see Subsection 6.1.1 for conventions),
such system is fully described by three parameters - D, γ and p. The case of cylindrically
symmetric harmonic trap (equivalent to setting p = 2) is already well explored [122, 119].
Our goal is to extend this analysis to higher values of p, which is the regime relevant for our
experiment. The discussion here is limited to the stability against radial rotons, i.e. excitations
that do not have axial dependence. For clouds with fully convex density distribution, it is
the radial roton modes that seed the instability, and results obtained here in those cases may
be taken as complete. However, as we will see, the steeper power-law potentials very often
produce concave clouds, and this is taken into account before drawing any conclusions.

In each run of the simulation, we fix γ and p, and find the ground state of the non-
interacting gas. Then, we continue by incrementing the dipolar interaction strength parameter,
D, starting a binary search algorithm for the stability boundary. In practice, we do the search
in terms of the parameter ν as defined in Equation 6.12, which then yields D.

The stability boundaries for the three different trap geometries used (p = 2, 6 and 20)
are shown in Figure 6.1. In each case the traps with a small aspect ratio γ ≲ 10 reach the
point of collapse for comparatively low values of ν , with the stability abruptly increasing
at intermediate to high aspect ratios. In the limit of γ → ∞ all three power laws seem to
converge to ν ≈ 5.5, which coincides with the prediction for an infinite dipolar gas confined
harmonically in one direction only, yielding ν∞

crit ≈ 5.5 [108].
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Fig. 6.1 Stability Boundary in the Box Trap - a) Harmonic trapping case (p = 2) exhibiting the
stability boundary that converges to the ‘infinite cloud’ limit by γ ∼ 40. Most of the stable solutions
are convex, apart from some isolated regions near the stability boundary at low values of γ (the upward
facing ‘teeth’ in the line at γ = 7− 20). Only these convex regions are prone to the angular roton
instability and the boundary is expected to be lower there6; b-c) Box potentials with soft walls (p = 6)
and hard walls (p = 20), respectively. In both cases, after the initial rise in the stability boundary at
low trap aspect ratios, a region of reduced stability follows and eventually converges to a constant
value. In all three cases the stability boundary converges to ν∞

crit ≈ 5.5 [108] for γ→∞. The numbered
red points label the parameters corresponding to the cases shown in Figures 6.2 to 6.4.
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The results for the p = 2 (Figure 6.1a) case replicate the data from the existing pub-
lications on the stability in harmonic traps [122], [119], showing the distinct regions at
γ = 7, 11, 15 . . . where the cloud assumes the concave, ‘red blood cell’-like shape close to
the stability boundary (see Figure 6.2a with γ = 11 as opposed to Figure 6.2c showing the
case of γ = 13). Further increasing γ seems to suppress the appearance of concave regions,
which suggests that the stability should not be affected by the angular roton instability, and
the stability boundary truly tends towards the ν∞

crit.
In the case of the box potential, both the soft wall p = 6 and the hard wall p = 20 (Figure

6.1b-c, respectively) trapping geometries show some common trends. The predicted stability
boundary exibits a spike at intermediate values of γ , followed by a broad dip to lower values,
before converging to ν∞

crit. Unlike the harmonic case, the density distributions in the large γ

seem to be necessarily concave, implying that the true boundary might be somewhat lower,
as a consequence of angular rotons. Whether this shift will be finite or would diminish
in the γ → ∞ limit remains an open question that we aim to investigate. Interestingly, the
distributions resulting from near-critical clouds in the ‘stability-dip’ region (γ = 20−100 for
p = 6 and γ = 50−250 for p = 20) are characterised by a sharp density spike near the trap
wall, implying that the actual boundary will be significantly lowered there.

6.2.2 Measure of Homogeneity

When working with oblate dipolar condensates in box traps, we are interested in establishing
a measure of homogeneity of the resulting density distribution. The quantity of interest for
us is the area density, as we only implement box confinement in the xy-plane, with the third
direction being harmonic:

n2D(r) =
∫

n(r)dz =
∫
|ψ(r)|2 dz . (6.49)

In a perfectly uniform cloud, each atom is surrounded by a gas of same local density.
As the distribution is made more and more inhomogeneous, this local density as seen by
individual atoms takes an increasingly wider range of values across the cloud. Therefore,
the information about homogeneity can be best extracted from the probability distribution,
PH(n2D), of locating an atom with a local surrounding density of n2D, which is analytically
defined as:

dPH(n′2D)

dn2D
=

n′2D
∫
|n2D(r)−n′2D|<dn d2r
∫

n2D(r)d2r
. (6.50)

6In fact, first results from our (not yet properly tested) implementation of the Bogoliubov-de-Gennes method
(Subsection 6.1.6) indeed suggest that the ultimate critical boundary is lower in these regions, with the values
in almost exact agreement with the data from [119, 122].
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In practice, this evaluation is done numerically by sampling the area density at a uniformly
distributed set of points in the xy-plane, binning the samples by density Nb(ni) at a range
of values {ni} and finally creating a histogram with weights equal to the bin density value
assigned to each bin:

Phist
H (ni) =

niNb(ni)

∑ j n jNb(n j)
. (6.51)

This histogram is a discretised version of PH(n2D), and can be used to extract key character-
istics about the distribution, such the local density averaged over atoms:

nmean = ∑
i

Phist
H (ni)ni (6.52)

or the variance of the local density across all the atoms:

nvar =
√

∑
i

Phist
H (ni)n2

i −n2
mean . (6.53)

Alternatively, these quantities can be evaluated directly from the area density as:

nmean =

∫
n2

2Dd2r∫
n2D(r)d2r

(6.54)

and

nvar =

√ ∫
n3

2Dd2r∫
n2D(r)d2r

−n2
mean . (6.55)

This allows us to define a simple homogeneity parameter that quantifies the uniformity of the
area density of the cloud:

H = 1− nvar

nmean
(6.56)

that takes values between 0 and 1, reaching the maximum for a perfectly homogeneous cloud.
A gas with repulsive contact interactions trapped in an optical box trap would reach

maximum uniformity for large values of the box exponent p, provided that the Thomas-
Fermi approximation applies. In a purely dipolar gas the situation is different, as the
anisotropic nature of the DDI leads to depletion of atomic density in the middle of the trap
and accumulation of material towards the walls, in the case when the interactions are strong.
We observe from the simulation that the most uniform distributions at a given interaction
strength are actually obtained for intermediate values of p.

Three examples of density distributions of a harmonically trapped dipolar gas are shown
in Figure 6.2. An example of the peculiar ‘red blood cell’ distribution is given in Figure 6.2a,
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Fig. 6.2 Area Density Distributions for p = 2 - Radial profiles of area density (n2D) and probability
distributions of weighted local density for harmonic trapping: a-b) γ = 11 near stability boundary,
showing the ‘red blood cell’ density profile ; c-d) γ = 13 near stability boundary, but outside the
‘red blood cell’ region, resulting in a convex cloud; e-f) γ = 50 just below the stability boundary,
demonstrating that the distribution remains convex all the way towards the critical point. b), d) and f)
also show the values of the homogeneity parameter (Equation 6.56) and the aspect ratio of the density
distribution (ratio of second moments along principal directions). The numbers shown in red refer to
labels in Figure 6.1.

while the remaining two distributions correspond to convex condensates. In all cases, the
homogeneity parameter takes a similar value of H ≈ 0.62.

Our investigation focuses on the higher power-law potentials, in the context of creating
uniform density distributions. We plot some interesting examples of the resulting density
distributions for the case of a soft-walled trap (p = 6) in Figure 6.3 and that of a hard-walled
trap (p = 20) in Figure 6.4. Comparing the large γ cases from subplots e) and f) in both
figures, we conclude that a hard wall trap will eventually lead to a more uniform cloud, but
this will only be the case in the very oblate case, λ ≫ 1 (where λ is the density aspect ratio,
defined as the ratio of second moments of the density along principal directions). Interestingly,
intermediate values of the density aspect ratio, λ ∼ 10−20, which are experimentally very
relevant, will fall into the ‘stability dip’ region for the hard-walled trap, while in the case of
the soft-walled trap, these same values of λ will be obtained for values of γ above the ‘dip’
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region. This has potentially very significant implications for designing the box-trap in the
experiment. Firstly, if we compare the density distributions with λ ≈ 17, obtained near the
stability boundary at γ = 1000 in the hard-walled trap (Figure 6.4c-d) with its counterpart7

from the soft-walled trap at γ = 300 (Figure 6.4e-f), we see that the softer trap leads to a more
homogeneous distribution (H = 0.8 as opposed to H = 0.75) while keeping the distribution
very close to true-concave. While this discussion is only preliminary, primarily because it
is necessary to determine to what extent the angular rotons change or add to the story, it
nevertheless calls for further investigation because of its relevance to setting up the box trap
in the experiment.

Fig. 6.3 Area Density Distributions for p = 6 - Radial profiles of area density (n2D) and probability
distributions of weighted local density for a soft-wall box trap: a-b) γ = 50 as an example of a reduced
stability region for γ ≲ 100 showing significant build-up of density around the edge of the trap ; c-f)
γ = 300 near and just below the stability boundary, shown here for comparison with a hard-wall trap
yielding the same aspect ratio of λ ∼ 17 (Figure 6.4a-d), hinting that for intermediate aspect ratios,
softer box traps might yield more homogeneous clouds near the stability boundary. b), d) and f) also
show the values of the homogeneity parameter (Equation 6.56) and the aspect ratio of the density
distribution (ratio of second moments along principal directions). The numbers shown in red refer to
labels in Figure 6.1.

7Note that the ν values of the examples used were also selected to be approximately at the same distance
from the stability boundary.
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Fig. 6.4 Area Density Distributions for p = 20 - Radial profiles of area density (n2D) and probability
distributions of weighted local density for a hard-wall box trap: a-d) γ = 1000 near stability boundary,
used for comparison with a soft-wall box trap distributions with the same aspect ratio (see Figure
6.3c-f); e-f) γ = 4000 close to the stability boundary, showing that for higher aspect ratios, steeper
traps still produce uniform clouds without excessive build-up of atoms at near the wall. b), d) and f)
also show the values of the homogeneity parameter (Equation 6.56) and the aspect ratio of the density
distribution (ratio of second moments along principal directions). The numbers shown in red refer to
labels in Figure 6.1.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

This thesis addressed the design and building of an experimental platform for investigating
many-body physics in quantum systems with dipole-dipole interactions. The described setup
is centred around the optical box trap, that will provide uniform confinement and enable the
creation of a flattened homogeneous dipolar gas of erbium.

I reported on the progress in the experimental effort, including building and commission-
ing a vacuum chamber with UHV pressure levels, loading a narrow-line erbium MOT from
an atomic beam using a Zeeman slower and subsequently reaching temperatures of 10µK
with up to 108 atoms. Installation and testing of a system for optical trapping and transport
employing focus tunable lenses is also outlined, along with the design and prototyping of the
systems for the optical box trap and Bragg spectroscopy. The cooling and trapping proce-
dures in the sequence up to the MOT have shown satisfactory operation and the subsequent
transfer into the optical dipole trap reached the desired efficiency of at least 20%. However,
problems were encountered with the optical trapping and transport setup where I presented
the details of the diagnostics and troubleshooting, along with plans for overcoming these
issues. Lastly, I gave an overview of preliminary results from a separate effort resorting to
numerical simulations for investigating the relations between trapping geometry and stability
of dipolar condensates.

With all these developments, once we reach the stage where the atoms can be evapora-
tively cooled to BEC and transported to the glass cell, we will implement the optical box
potential and the Bragg spectroscopy setup, aiming to address the first scientific projects
on this apparatus. We then aim to harness this platform to probe exotic roton physics,
out-of-equilibrium systems, phase transition dynamics and superfluidity. In addition, an
expansion of the experiment that is introducing potassium will give us access to simulating
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impurity physics models such as Bose polarons [66] or open systems with non-Markovian
decoherence [67, 68].

7.2 Completing the Experimental Platform

Most of the effort in the period to follow will be directed towards the optical setup for
trapping and transport of atoms. In order to battle the problems caused by aberrations and
thermally induced distortion in the tunable lenses, we plan to investigate if any modifications
to the setup might improve the behaviour. Options being considered are sacrificing some
beam waist tunability for tighter confinement, exploring options for better heat management
and heat-sinking in the tunable lens mounts [92] and implementing drift compensation to
the lens driver. In combination with that, we plan to temporarily build a fixed-lens system
to perform evaporation to BEC in the MOT chamber, as a benchmark for any potential
improvements to the tunable lens system to be weighed against. If the final outcome turns
out to be negative, we will be ready to switch to a different technology, most likely the Moiré
lenses [94]. In parallel with the troubleshooting of the ODT and transport, we will install the
new laser locking setup for the 583 nm laser based on a ULE optical cavity. This should bring
further improvements to the stability and temperature limit of the MOT, and in combination
with some maintenance on the Zeeman slower and transversal cooling stages, it should also
amount to faster and more efficient loading of the trap.

The optical box setup and Bragg spectroscopy setup prototypes have been designed and
successfully tested. With a working blueprint of the optical setup and the design of the
magnetic field coils in progress, the region around the science cell will be soon populated
with optics. As a result, we expect to be able to implement the optical box soon after a
working transport stage is achieved.

In parallel with the progress in the main, erbium branch of the experiment, the potassium
setup has been designed and building is in progress. The optical systems for locking the two
cooling lasers and controlling the light frequencies are being actively set up, and the vacuum
chamber housing the 2D potassium MOT is approaching the point when it will be connected
to the main vacuum chamber and pumped down to vacuum.
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7.3 Future Projects

7.3.1 Probing the Roton Physics

The existence of a roton minimum in the excitation spectrum of a trapped dipolar gas has
been demonstrated experimentally in various system geometries. By tuning the depth of
the roton feature via the s-wave scattering length and Feshbach resonances, it was shown
how it affects stability of the gas, and how it can be exploited to push the system through
a transition into a supersolid state of matter. The shape of the excitation spectrum also has
implications for the superfluid critical velocity, vc. In the absence of vortex excitations, it
be estimated through the Landau criterion, that sets the critical velocity to be equal to the
(minimal) slope of the straight line in the ω(k) graph, passing through the origin and being
tangent to the excitation spectrum (Figure 7.1a).

Working with an erbium BEC trapped in the optical box from our platform, we plan
to independently measure the critical velocity using a stirring method [123] (Figure 7.1b)
and also deduce it from the excitation spectrum via the Landau criterion. The excitation
spectrum will be measured using the Bragg spectroscopy technique [101, 102, 36], presented
in Section 5.5, while the stirring method can also be implemented using the same optical
setup by projecting the appropriate dynamical pattern onto the DMD. This will allow us
to compare the two results for critical velocity, and quantify the role of the vortex-like
excitations in the spectrum.

7.3.2 Phase Transition Dynamics with Long Range Interactions

The transition from a thermal gas to a BEC is a second order phase transition, meaning
that the order parameter evolves continuously while the system is crossing the transition
temperature Tc and it always exhibits symmetry breaking. In this particular example, the
order parameter is the condensate wave function, Ψ0, and the symmetry being broken is the
SU(1) symmetry of its phase. In the adiabatic limit, when the transition is crossed infinitely
slowly, the entire condensate will assume a state with a unique phase. In contrast to that, if
the transition is traversed at a finite rate, domains with different order parameter values will
appear, as a consequence of the limited range over which the correlations can spread through
the system before being frozen out. This mechanism is described by the Kibble-Zurek
(KZ) theory, first developed for cosmological systems [110], and later expanded to a more
general scope [111]. Ultracold atom platforms proved to be well equipped for exploring this
experimentally, due to the broad ability of tuning system parameters and readily accessible
critical phenomena, with the BEC transition being the most important and widely employed.
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Fig. 7.1 Superfluid Critical Velocity - a) The excitation spectrum of a strongly dipolar BEC,
exhibiting a roton minimum. According to the Landau criterion, the critical velocity for superfluidity
is determined as the slope of the line extending from the origin and tangent to the spectrum from
below. This model does not take into account vortex excitations; b) The stirring method for measuring
the superfluid velocity, where a dynamic potential generated using a DMD will be used to perturb the
trapped gas. If the stirring is performed below the superfluid critical velocity, no excitations should be
detected.

Given that this transition is sensitive to density, it is clear that systems with homogeneous
density give a crucial advantage in these efforts [23, 124, 125], as all parts of the system
traverse the phase transition at the same instance.

The KZ mechanism is based on the universal scaling behaviour of system parameters in
the vicinity of the critical point, which predict that the correlation length of the system obeys
a power law scaling in temperature (here represented via a dimensionless quantity ε = T−Tc

Tc
):

ξ ∝ |ε|−ν . (7.1)

Similar scaling relations can be set up for the heat capacity, order parameter magnitude,
susceptibility and other parameters, each with its own scaling exponent. It has been shown
that the these exponents are insensitive to microscopic properties of the system, but rather
that they are determined by the dimensionality and symmetries of the system and the order
parameter. This led to the establishment of a finite set of universality classes, represented
by different collections of scaling exponent values [126]. The BEC transition in Bose gases
falls under the XY-Model, together with the superfluid transition in liquid 4He.

All of the above scaling relations represent static, equilibrium properties of the system.
The description of these systems can be expanded with dynamic scaling relations, which
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Fig. 7.2 Kibble-Zurek Theory - a) Linear temperature ramp inducing a second order phase transition.
b) The divergence of the correlation length and the relaxation time in the proximity of the critical
point, leading to the freezing out of correlations once the relaxation time becomes longer than the
time remaining to the transition crossing. This results in the correlations developing only up to the
range quantified by the freeze-out correlation length ξ̂ , which is manifested in c) that depicts grains
of uniform order parameter of average size ∼ ξ̂ . This figure is inspired by the explanation from [19]
and the figure therein.

allows for non-adiabatic scenarios to be addressed. In the context of KZ theory, the scaling
of the typical relaxation time of the system is particularly important. This is the timescale
that governs how quickly the correlations in the system will adjust to accommodate the new
equilibrium value of ξ following a change in temperature. This relaxation timescale scaling
is represented by the dynamic exponent z:

τ ∝ ξ
z

∝ |ε|−νz (7.2)

which is categorised by a different set of dynamic universality classes, with the F-Model
being the relevant class for the BEC transition [127]. These two scaling relations can be used
to predict resulting domain size from a finite rate quench within KZ theory. If the quench is
assumed to be linear, ε = tc−t

τQ
, with τQ representing the characteristic quench timescale, then

at some point in the ramp, the relaxation time, of the system will exceed the time remaining
until the transition is crossed (see Figure 7.2 for a pictorial description). This moment in time
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is refereed to as the freeze-out time, as it represents the point after which the correlations are
no longer able to be communicated across the whole system. It is defined via the relation
tc− t̂ = τ(t̂), yielding the characteristic frozen-out correlation length, ξ̂ = ξ (t̂) with the
scaling predicted by KZ theory:

ξ̂ ∝ τ

ν

1+νz
Q . (7.3)

Since the transition point is reached without developing correlations at ranges larger
than ξ̂ , it is expected that the resulting domain size will be well described by this length
scale, and will obey the scaling with the linear quench rate from Equation 7.3. Experiments
have confirmed the agreement with the F-Model prediction (ν = 0.67 and z = 3

2) yielding
ν

1+νz = 0.33 for the KZ scaling factor [23, 24].
Exploring phase transition dynamics in systems with dipolar interactions is attractive

and interesting for multiple reasons. Firstly, the long range nature of the dipole-dipole
force may alter the mechanism of correlation propagation through the system. This may
result in a different set of scaling exponents, or just affect the multiplicative constants in the
relations, but in both cases it is a subject worth exploring. In the same context, the effects
of the long range force on the coarsening dynamics could also be measurable. Additionally,
temperature quenches are not the only tool for inducing phase transitions in quantum gases.
The strength of contact interactions can also be ramped via the Feshbach resonances, and
unlike evaporative cooling, these are technically reversible. Given that there is a possibility
of traversing the BEC transition critical point by quenching interactions, provided by the
dependence of Tc on interaction strengths, this leaves an option for examining the reversibility
of the transition and presence of any hysteretic artefacts that might be left after crossing the
transition multiple times. Finally, another transition that can be addressed by an interaction
quench is the supersolid transition seeded by the roton instability [40–42]. Being a quantum
phase transition, this could probe into the quantum limit of the KZ theory.

7.3.3 Dual-Species Experiments with Potassium

With the addition of potassium atoms to the platform, making it a dual-species experiment,
we lay the grounds for exploring impurity physics in bosonic systems in the presence of
dipole-dipole interactions. One route that we might take with the experiments is investigating
Bose polarons, that can be made anisotropic by the dipole-dipole force [66]. The rich
spectrum of Feshbach resonances in ultracold erbium [29, 57] gives us large freedom in
tuning the scattering properties of Er-Er collisions, and due to the anisotropic electronic
configuration of erbium that is responsible for that fact, it is also reasonable to expect similar
abundance of Feshbach resonances for Er-K scattering. When this is combined with the
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long-range and anisotropic nature of the dipolar force, we should be left with an advanced
ability of tuning the dispersion relations of the polarons.

Fig. 7.3 Non-Markovian Qubit Decoherence - a) The roton spectrum of a strongly dipolar gas with
the roton and maxon features that correspond to a locally flat dispersion relation. This causes the
density of states of the dipolar BEC to peak at the energies associated with the roton and the maxon,
which has profound consequences if the condensate serves as a thermodynamic reservoir into which
a qubit is immersed. The frequencies ωm and ωr will dominate the evolution of this open system,
possibly rendering the decoherence of the qubit non-Markovian.

The tunability of the excitation spectrum of the erbium BEC makes it a promising
candidate for a controllable quantum reservoir in some open quantum system models. As the
spectrum softening, exhibited in the creation of the roton minimum and the accompanying
maxon feature, leads to very high density of states at the roton and maxon frequencies, ωm

and ωr, such reservoir might lead to non-Markovian decoherence in a system coupled to it.
In a model introduced in [67, 68], the information flow from a single-atom qubit immersed
in a dipolar condensate can be controlled by tuning the parameters of the reservoir. In
the presence of the roton feature, the decoherence evolution will be dominated by the two
frequencies corresponding to the roton and the maxon, leading to non-Markovian behaviour
and the possibility of information flow back from the reservoir into the system.



Appendix A

Pumping System Design

The purpose of this section is to provide details on the design considerations for our vacuum
chamber from the point of view of vacuum pumping and reaching desired pressures in the
UHV range (below 10−10 mbar). This includes managing molecular flow conductances,
pumping speeds and accounting for sources of the background gas, such as leaks, outgassing
and permeation.

A.1 Molecular Flow Regime

At very low pressures, when the mean free path is much larger than the typical linear
geometric size of the chamber, gases are in the so called molecular flow regime. The mean
free path is defined as:

⟨l⟩= (nσ)−1 (A.1)

where n is the number density of the gas σ is the scattering cross section. For gases
expected to be present in the chamber (N2,H2,He,CO2...) the scattering cross sections are
∼ 0.1−1.0 nm2 [128]. This means that at room temperature and pressures below 10−6 mbar
the mean free path of gas particles will be > 1 m, which is large compared to vacuum
chamber dimensions. Hence, the molecular flow regime can be assumed. The situation with
atomic vapours is a little bit more complicated, as data on scattering cross sections is not
as readily available. From the information in [128] the scattering cross section of mercury
can be deduced to be 1.0 nm2, so it is probably reasonable to assume that both erbium and
potassium have their scattering cross sections on this scale.
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In the molecular flow regime, it is possible to establish an equivalence between systems
with gaseous flow and electrical circuits1:

Pressure (P)←→ Voltage
Molecular Conductance / Pumping Speed (C / S)←→ Electrical Conductivity

Molecular Throughput (Q)←→ Electrical Current
Volume (V )←→ Capacitance

Molecular Quantity (q = pV )←→ Charge

The molecular throughput is defined as Q = pV̇ , i.e. as pressure multiplied by the volumetric
flow rate. For ideal gases it is proportional to the number flow rate, where the constant of
proportionality is kBT . The molecular conductivity of a chamber section is then defined as:

C =
Q
∆p

(A.2)

where ∆p is the pressure difference across the section, and Q is the molecular throughput
through that section. The conductance has units of [Volume]

[Time] . In complex vacuum systems,
involving chamber sections connected in parallel or in series, the effective conductance can
be calculated using the formulas:

Cpar =C1 +C2 , (A.3)

Cser =
(
C−1

1 +C−1
2
)−1

. (A.4)

These formulas assume that the initial conditions for the atoms entering all chamber sections
correspond to those of a large reservoir. Care must be taken when applying these formulas
to real chambers, as the quality of approximation might vary. Some useful formulas for
conductivities of relevant structures [71]:

• Aperture:

Cap =

√
kBT
2πM

A =C0A (A.5)

where A is the surface area of the aperture, and M is the molecular mass. Using this
result, the conductivities of many pipe systems can be expressed using the transmission
probability, α:

Csys = αC0A . (A.6)
1Note that only molecular flow quantities are represented using symbols in this appendix, to avoid ambiguity

with the electrical ones, e.g. volume vs. voltage.



140 Pumping System Design

• Straight pipe section:
A good approximation for α through a tube of diameter D and length L is:

α =
1

1+ 3L
4D

(A.7)

leading to the overall conductivity of :

Cpipe =

√
πkBT
18M

D3

L

1+ 4D
3L

. (A.8)

• Elbow:
A reasonably good approximation for α that matches the experimental results [129]
well is

α =
1

1+ 3
8

(
L1
D + L2

D + L1L2
(L1+L2)D

) (A.9)

where L1 and L2 are the lengths of the two branches of the elbow.

• Tee:
An approximation applied in this case is using the series conductivity of the two
straight branches for the straight section, and the conductivity of the elbow reduced by
the conductivity of one of the straight branches for the orthogonal section.

In this picture, the vacuum pumps are modelled as connections to the electrical ground, i.e.
zero pressure, through a conductance equal to the pumping speed of the pumps. Following
the same logic, the analogy with electrical circuits can be extended to the kinetics of the
pumping process, as the volume V of the given chamber section is effectively its capacitance.
Being equivalent to that of an RC-circuit, the pumping time-constant for a chamber section
can be written as:

tpump =
V

Ctot
(A.10)

where Ctot is the total pumping capacity2 from the section in question provided by pumps.

A.2 Gas Sources

The limiting factor on the equilibrium pressure in pumped vacuum systems are sources that
replenish the background gas. In our case the three dominant contributors are leaks at the

2i.e. conductance to the pump drain point / conductivity to the grounding point.
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flange connections, outgassing from surfaces and gas permeation through the chamber walls
and windows. In our simulation, these are modelled in the following way:

• Leaks: In our apparatus, all the flange connections are made using Con Flat (CF)
flanges. Different manufacturers give varying specifications for leak rates of a prop-
erly sealed flange, but based on a range of sources, a good estimate seems to be
10−11 mbar L s−1 per flange connection. This total rate is then distributed among
components present in air according to partial pressures.

• Outgassing: Stainless steel contains significant amounts of dissolved hydrogen left
over by the manufacturing process, which diffuses through the bulk material and out-
gasses into the vacuum chamber. According to [71], for clean but not thermally treated
304L or 316LN stainless steel, the outgassing rate of hydrogen is typically 10−9−
10−8 mbar L s−1 cm−2. In order to achieve UHV pressure levels, the chamber needs
to be baked out until the outgassing drops to levels of 10−12−10−13 mbar L s−1 cm−2,
according to the same source. We will use the value of 10−12 mbar L s−1 cm−2 in the
calculations and also as a goal for the bakeout procedure.

• Permeation: According to the literature, permeation of hydrogen through stainless
steel is a significant contributor only at very high temperatures [130]. At room tempera-
ture, it is only necessary to account for helium permeation through glass windows. The
rate used, for glass of thickness d is 3.8 ·10−13 mbar L s−1 cm−2 ( d

1 mm

)−1
, derived

from the model an data given in [131] and assuming He abundance in air of 5 ·10−5.

Note that, even after the bakeout, in a typical chamber with exposed steel area of
1000 cm2 and 10 flange connections, hydrogen outgassing contribution to the total gas
source rate is two orders of magnitude larger than that of the flange connection leaks (also
refer to Table A.1 for number specific to our system). This highlights the importance of
performing an adequate bakeout for reaching UHV pressure levels.

A.3 Calculations for Our Experiment

Our vacuum chamber can be represented as a collection of ten regions with known conduc-
tances between them (Figure 2.2). Basing the model on the assumptions about background
gas sources laid out above, we also calculated all the source terms, which are given in Table
A.1. The pumping speeds for the appropriate set of gases are available from the pumps’
specification sheets, and are reported in Table A.2. This allows us to set up an equivalent
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Fig. A.1 Equivalent circuit of the pumping system

electrical circuit, with known resistances and current source terms. The layout of such circuit
for our final design of the system is shown in Figure A.1.

This circuit can be straightforwardly solved for voltages at nodes, employing Kirchhoff’s
circuit laws, and we are particularly interested in pressures in the science cell (region 8),
MOT chamber (region 5) and the HV section (region 4). Using the values for system
parameters from the Tables A.1, A.2 and A.3, we obtain the pressures of 1.1×10−11 mbar,
3.0× 10−11 mbar and 3.3× 10−11 mbar in these three regions of the vacuum chamber
respectively3. Given that we haven’t accounted for any extra outgassing from the oven, due
to the general uncertainty how to model that, we check the behaviour of the predictions for
these pressures upon increasing the outgassing rate in the oven region. We conclude that
with the existing differential pumping tube, an increase of the oven outgassing rate by two
orders of magnitude, only yields a 10% increase in the science cell pressure, while going
another order of magnitude higher increases it by 50%.

Another interesting test that we have performed using this model is to check how the
science cell pressure would behave if there was no extra pump between it and the MOT

3This also implies pressure in the 10−7 mbar range prior to the bake, which agrees well with observations
at that point (see Figure 2.12, noting that the UHV turbo pump is only providing < 10 L s−1 of pumping speed,
explaining a higher gauge reading).
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Term Viewports Flanges Exposed Area Sources

16CF + 35CF Steel Glass N2 O2 Ar H2 He[
cm2] [

cm2] [
10−11 mbar L s−1]

Q0 0 + 0 2 480 0 1.56 0.42 0.02 48 0

Q1 0 + 4 5 480 38 3.90 1.05 0.05 48 0.57

Q2 0 + 3 2 250 29 1.56 0.42 0.02 25 0.44

Q3 0 + 0 5 160 0 3.90 1.05 0.05 16 0

Q4 0 + 0 1 70 0 0.78 0.21 0.01 7.0 0

Q5 4 + 5 18 900 56 14.0 3.78 0.18 90 0.84

Q6 0 + 1 3 400 9.6 2.34 0.63 0.03 40 0.15

Q7 0 + 1 9 500 9.6 7.02 1.89 0.09 50 0.15

Q8 0 + 0 1 10 140 0.78 0.21 0.01 1.0 2.1

Q9 0 + 0 2 70 0 1.56 0.42 0.02 7.0 0

Table A.1 Source gas influx rates used in the calculations

Term Model Pumping Rates
[
L s−1]

N2 O2 Ar H2 He

S2 NexTorr D-100 40 100 6 100 6

S6 NexTorr D-300 100 300 6 300 6

S9 NexTorr D-100 40 100 6 100 6

Table A.2 Pumping speeds used in the calculations

Section C01 C13 C23 C34 C45 C56 C57 C59 C89

Conductance [L s−1] 5.93 61.8 34.9 61.8 0.113 28.4 2.29 4.17 5.00

Table A.3 Chamber Conductances for N2 Molecules

chamber. This is an important question as the absence of that pump would allow for a shorter
optical transport length between the two chambers. The model predicts a fivefold increase in
pressure if the chamber was constructed without that pump in place.

Finally, we calculated the predictions on the pressure differential between the HV and
UHV sections for different diameters of the ZS tube. Comparing the case of the model oven
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outgassing increased by 3 orders of magnitude, we observe that the science cell and MOT
chamber pressures would increase by similar factors of approximately 2 and 3 if the ZS tube
had the diameter of 10mm and 12mm respectively. Note that the results from Subsection
2.1.2 suggest that these same increments of the ZS tube diameter will lead up to only a 50%
increase in the atomic flux from the oven reaching the chamber.

A.4 Bakeout Process

Diffusion of hydrogen through bulk stainless steel is a thermally activated process, hence
the material can be depleted of hydrogen by pumping at elevated temperatures. Typical
bakeout procedures of vacuum chambers in ultracold atom experiments involve temperatures
of up to 200 ◦C and last for a number of days. In some cases, certain components limit the
bakeout temperature at a lower value, and then a judgement needs to be made on how much
the baking should be prolonged to achieve the desired pressure levels. An estimate can be
made if we look at the total gas quantity removed from the bulk material, which according to
[132, 133] scales as:

A ∝ (Dt)
1
2 q (A.11)

where D is the diffusion rate, which in the case of hydrogen in steel takes the form:

D = D0e−
Ediff
kBT (A.12)

and for austenitic steels (304L, 316L, 316LN etc.) the constants take the form D0 = 5.8×
10−3 cm2

s and Ediff = 0.558 eV [134]. As the quantity of hydrogen removed from the bulk
metal will directly feed into the post-bakeout outgassing rate, this provides us with the
means of scaling the duration and temperature of different bakeout processes for comparison
purposes. Basically, a bakeout for time t1 at temperature T1 should be equivalent to a bakeout
for time t2 at temperature T2 if:

t1
t2

= e−
Ediff
kB

( 1
T 2− 1

T 1) (A.13)

In the case of stainless steel this would mean that baking for t at 200 ◦C is equivalent to
baking for 5.0× t at 150 ◦C or for 39× t at 100 ◦C, clearly showing the large advantage of
using maximum practically possible temperature.



Appendix B

Computer Simulation of the Atomic
Beam

In order to better understand the process of cooling and slowing of the atomic beam from the
effusion cell oven, and to aid the design considerations for the laser cooling optics and the
vacuum system, I wrote a Monte-Carlo computer simulation of the atomic beam dynamics1.
The simulation describes the beam from its nascence in the effusion cell to the end of the
path at the MOT chamber, implementing transversal cooling and Zeeman slowing along the
way. The beam is represented in the simulation by a sample of atoms, with initial parameters
generated from appropriate distribution functions, that are propagated through the system
one-by one.

B.1 Effusion Cell

Erbium used in our experiment is dispensed from a high temperature oven. As shown in
the figure, the oven consists of two chambers fitted with apertures. Solid erbium material is
placed into the first chamber, the effusion cell, which is equipped with a set of heaters and is
typically kept at temperatures between 1000 ◦C and 1200 ◦C during normal operation. At
these temperatures the vapour pressure of erbium in the cell is significant, and atoms effuse
through the tubular aperture into the second chamber of the oven - the hot lip. This part of
the oven has separate heaters, and it’s usually maintained at a slightly elevated temperature
compared to the effusion cell, to avoid condensation of erbium on the second aperture, which
is at the same time the output port of the oven.

1Code is written in Matlab
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The vapour pressure in the effusion cell can be estimated using the Antoine equation
[57, 69]:

pvap (Tec) = 10A− B
C+Tec mbar (B.1)

where the empirical constants for erbium are AEr = 7.103(4), BEr = 12170(20) K and
CEr = −173(2) K. The atoms from the erbium saturated cell effuse towards the hot lip
section through a tubular aperture of diameter D1 = 3 mm and length L1 = 30 mm. The
distribution of the flux of the atoms at the entry to the circular aperture can be calcualted as:

dΦ

dvdθdφ
=

(
m

2πkBTec

) 3
2

4πv2e−
mv2

2kBTec
nvsinθ cosθ

4π
(B.2)

In the simulation, a representative sample of atoms that enter the tubular aperture is generated
from the following distribution functions (employing a random variable drawn from the
uniform distribution over the unit interval2, xrand):

v =

√√√√−2kBTec

m

(
1+W

(
x(1)rand−1

e

))
, (B.3)

θ = sin−1
(√

x(2)rand

)
, (B.4)

φ = 2πx(3)rand (B.5)

and the spatial position where the atom enters the aperture is chosen randomly using a uniform
distribution over the aperture. In the equations above, W (z) represents the principal branch
of the Lambert W function. The atoms are then propagated along the tube, rethermalising
them every time they hit the tube wall. The re-thermalisation process implies assigning the
atom with a new velocity generated from a Maxwell-Boltzmann distribution at temperature
Thl and new direction of motion selected randomly. In order to check the validity of this
model, the proportion of the atoms that pass through the tube is compared with a known
formula for the transmission probability of a tube in the molecular flow regime:

α =
1

1+ 3L
4D

. (B.6)

For the 30mm long tubular aperture with a 3mm diameter, this equation yields α = 0.117
and the simulation reported the value of 0.132 showing good agreement.

2The superscripts in equations are there to clarify that an independent random variable is generated for each
of the parameters.
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In order to normalize the results of the simulation, the total rate of effusion into the tube
is estimated by integrating the formula from above:

Rec =

√
π

2kBTecm
Pvap(Tec)

D2
1

4
. (B.7)

The atoms that make it through the first aperture are propagated further along the oven,
through the hot lip section. The atoms that exit the oven through the second aperture are
saved in a sample file, whereas the ones that hit the walls of the hot lip are rethermalised and
then an appropriate proportion of them is added to the sample accounting for the atoms that
effuse directly from the hot lip.

B.2 Transversal Cooling

In the transversal cooling stage, two pairs of counter-propagating beams are directed onto
the atomic beam from transversal directions. In the simulation, the atoms are propagated
through the TC region in finite time increments, counting the number of scattered photons
from each of the beams during every step, based on the instantaneous position and velocity
of the atoms. The scattering rate from each beam is estimated using Equation F.3 for each
beam ( i ∈ {1,2,3,4}) individually:

R(i)
scatt =

Γ

2
si

1+∑
4
i=1 si +

4δ 2

Γ2

(B.8)

where Γ is the transition line width, k is the wave number of the laser light, δ = δ0 + kvi

is the effective detuning accounting for the base laser detuning δ0 and the Doppler shift,
and si are the saturation parameters of the beams. Once the scattering rates are established,
the appropriate momentum adjustments, including the shot and spontaneous emission noise
contributions (see Equations F.4 and F.5), are then applied to the atoms. Note that the
saturation parameters si are spatially varying, accounting for the Gaussian profiles of the
cooling beams. As the maximum optical powers used in the experiment limit the individual
saturation parameters to si ≲ 1, the approximation of using the total saturation parameter in
the denominator in Equation B.8 is still justified [135], but it should be expected that the
effect of cooling will be somewhat overestimated.
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Fig. B.1 Simulated Velocity Distributions -

B.3 Zeeman Slower

The Zeeman slower is also implemented in the simulation and it is treated in much the same
way as transversal cooling, only here the scattering rate can be directly calculated based on
the light intensity and the effective detuning (that contains the actual laser detuning, along
with the Doppler and Zeeman shifts) without resorting to approximations. The magnetic
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field profile in the Zeeman slower is calculated prior to propagating atoms, based on the coil
geometry and specified currents, using the Biot-Savart law.

However, as this part of the simulation had not been not fully developed and tested by the
time we had to make final decisions about the geometry of the chamber and ZS coils, we
instead resorted to simpler, 1D simulations of the slower for the purposes of the design.



Appendix C

Atomic Beam Fluorescence
Measurements

Since our experiment sources the atoms from a beam emerging from an oven, having an
insight into the velocity and spatial profile of the beam is crucial for optimising the early
laser cooling stages - the Zeeman slower and the transversal cooling. For this purpose, we
have set up a set of beams, that are derived from the MOT beams through a minor temporary
adjustment:

• "Bottom beam" - Vertical, upward propagating beam derived from the bottom MOT
beam by implementing a 8.2 mm diameter iris. This beam may be used to measure the
transversal velocity distribution of atoms.

• "Top beam" - Beam tilted by 3◦ in the vertical plane into the stream of atoms, derived
from the top MOT beam by implementing a tilt and introducing the same iris as above.
This beam is utilised for probing the longitudinal velocity distribution in the MOT
chamber, with lower resolution over an extended range.

• "Side beam" - Beam derived from one of the horizontal beam by again introducing
the 8.2 mm diameter iris. This beam has the same purpose as the Top beam, but due to
its tilt of 57◦ it probes a narrower band of velocities with a higher resolution.

The total photon scattering rate coming from a laser beam overlapped with the atomic
beam can be expressed as:

R(δ ) =
∫ ∫

dv⊥dv∥N
(
v⊥,v∥

)
R0(v⊥,δ ) (C.1)
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where N
(
v⊥,v∥

)
represents the number of atoms in the interaction region belonging to the

velocity class
(
v⊥,v∥

)
and it can be linked to the velocity distribution of the flux in the atomic

beam using:

F
(
v⊥,v∥

)
=

v∥N
(
v⊥,v∥

)

Lint
(C.2)

with Lint being the length of the interaction region along the propagation direction, whereas

R0(v⊥,δ ) =
Γ

2
s

1+ s+ 4(δ−kv⊥)
2

Γ2

(C.3)

is the single-atom scattering rate [74], given the laser detuning δ and transversal velocity v⊥
(along the direction of the laser beam).

C.1 Transversal Probing

C.1.1 Calibration

In the case where the laser beam is orthogonally incident on the stream of atoms, then v∥
represents the longitudinal velocity of the atomic beam, and v⊥ is the transversal velocity.
Then, we may use the numerical simulation of the oven atomic beam to model the flux
distribution F

(
v⊥,v∥

)
by sampling the atoms that reach the MOT chamber and then em-

pirically constructing a distribution that well matches the sample. Taking the data series
for Tec = 1100 ◦C, which contains ∼ 4.3×104 atom samples that reach the MOT chamber,
we first fit the longitudinal velocity distribution with the ansatz1 f∥

(
v∥
)
= f0v2

∥ exp
(
−Av2

∥

)

yielding A = 6.3× 10−6 (m
s

)−2. From there, the full flux distribution can be represented
using the Bayes theorem:

F
(
v⊥,v∥

)
= 4πF0

(
A
π

) 3
2

v2
∥ exp

(
−Av2

∥
)

F
(
v⊥|v∥

)
. (C.4)

Here, F
(
v⊥|v∥

)
represents the conditional probability distribution of v⊥ given v∥. By taking

samples from narrow (100 m
s wide) intervals over the longitudinal velocity and using the

fitting ansatz of

F
(
v⊥|v∥

)
= a1 exp

(
− v4
⊥

2b4
1

)
+a2 exp

(
− v2
⊥

2b2
2

)
(C.5)

1Chosen as the best fit for the data among several tried functions of the general form f∥
(
v∥;m,n

)
=

f0vm
∥ exp

(
−Avn

∥

)
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we converge to the empirical form of the conditional probability that describes the simulation
data well:

F
(
v⊥|v∥

)
=

(
1− e−

( v∥
v0

) 3
2
)

e
− v4

⊥
2(B1+C1v∥)

4

++e−
( v∥

v0

) 3
2

e
− v2

⊥
2(B2+C2v∥)

2

(
1− e−

( v∥
v0

) 3
2
)

4

√
(B1+C1v∥)

4

8 Γ
(1

4

)
+ e−

( v∥
v0

) 3
2√

2π
(
B2 +C2v∥

)2

(C.6)

with the fit parameters being B1 = 0.093 m
s , C1 = 0.00345, B2 = 0.054 m

s and C1 = 0.00260.
Despite the cumbersome final form of the expression for the scattering rate, given Γ and
s, it can be numerically integrated, first along v∥ and then along v⊥ to give a prediction
for the fluorescence signal. By comparing the peak height of the measured signal with the
peak height of the unit flux obtained using this method, the total flux in the beam, F0 can be
estimated.

C.1.2 Flux Measurements

The "Bottom" beam, that is incident to the atomic beam at right angle was used to measure the
flux in the MOT chamber. The summary of two sets of measurements that are presented in this
thesis is given in the Table C.1. A CMOS camera that was employed in these measurements
has a conversion constant of Ccamera = 0.36 counts

photon in the settings configuration that was used2.

Data Set 19/10/2020 12/04/2019

Isotope 166Er 166Er

texp [ms] 990 900

Solid Angle, Ω [sr] 2.1×10−3 2.1×10−3

s = I
Isat

1.5±0.5 20±5

Cflux[
counts

atoms/s ] (1.0±0.3)×10−3 (3.2±0.8)×10−3

Signal at 1100°C [counts] 8.2×106 4.0×107

Flux at 1100°C [atoms / s] (4.5±2.6)×1010 (1.1±0.6)×1011

Signal width (pred.) [MHz] 1.5 1.6

Signal width (meas.) [MHz] 2.0 2.2

Table C.1 Flux Measurements

2Thorlabs DCC3260M, with 12-bit binning and digital gain level set to 55/100
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C.2 Angled Probing

If the laser beam is instead tilted by an angle θ into the atomic beam, then it can be used to
probe the longitudinal velocity distribution of the atoms. Sticking to the nomenclature where
the longitudinal and transversal atomic velocities are labelled v∥ and v⊥, the component
along the propagation direction of the laser can be expressed as:

vθ = v∥ sinθ − v⊥ cosθ . (C.7)

A full quantitative analysis similar to above can be developed in this case as well by writing
v⊥ =

v∥ sinθ−vθ

cosθ
, but a heuristic approach can be very informative as well. Since v⊥ has a

symmetric probability distribution centred around zero, for a given laser detuning δ , there
will exist a resonant longitudinal velocity that is dominantly probed by the laser, given by:

v∥ =
δ

k sinθ
. (C.8)

Also, recalling Equation C.2, the flux of any given velocity group will be roughly proportional
to v∥(δ )S(δ ), where S(δ ) is the total fluorescence signal measured at laser detuning δ . The
resolution of this measurement will be limited by the spread in transversal velocities (provided
that a narrow-line transition is used for probing), and this effect can be quantified using
the observations from the transversal probing measurements. The observed signal width
of ∆⊥ ∼ 2π × 2 MHz is indicative of the spread in transversal velocities, which can then
be estimated as ∆v⊥ = ∆⊥

k = 1.2 m
s , where k is the wave number of the laser light3. For an

angled probe scenario, this spread will couple into the resolution as:

∆vθ = ∆v⊥ cotθ (C.9)

yielding a resolution of ∆vθ ,Top ∼ 30 m
s for the ‘Top’ beam probing and ∆vθ ,Top ∼ 1 m

s for
the ‘Side’ beam probing.

Knowing the velocity resolution, a conversion between the measured fluorescence signal
and flux velocity distribution can be established as:

S(δ ) = F(v∥(δ ))∆vθ

Lint

v∥(δ )
texp

Γs
2(1+ s)

CcameraΩ (C.10)

3All of the flux measurements presented here are performed using 583 nm light.
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Vacuum Cleaning, Assembly and Bakeout
Procedures

In this appendix I give an overview of the steps and procedures related to the vacuum chamber
assembly that we adhered to. These are based on instructions from the technical literature [71],
doctoral and master’s theses of students involving vacuum chamber construction [136, 137],
component instruction manuals and experience of our colleagues. Some steps involved a
degree of improvisation, necessary to adjust the process to the specifics of our design or
resulting from the circumstances.

D.1 Preparation

In order to minimise the amount of dust present during assembly, the area around the optical
table was isolated using plastic dust sheets. As the laboratory had been vacant for a long time
prior to the start of our project, and hence was very dusty, we decided to go with the safe
option of having a clean and isolated area for assembly. The inside of this space was wiped
and dusted both before and after installation of the plastic sheets. Any tools or components
to be used inside this area, that haven’t already arrived in clean packaging were also wiped
with a dust cloth or alcohol wipes at this stage.

We proceeded to prepare all the components and accessories to be used during this
process. Here, I offer a checklist of required items along with any relevant comments:

• Copper Gaskets: Our chamber contains three different sizes of CF flanges, and we
also used the softer, fully annealed copper gaskets for viewports, as opposed to the
regular, OFHC, gaskets for all other connections. Furthermore, some components
required wide-bore gaskets (e.g. the erbium oven could only fit through 38mm ID



D.1 Preparation 155

CF35 gaskets). As gaskets often come in unlabelled packaging, they were all sorted in
clearly marked plastic containers.

• Flange Fasteners: It is important to prepare a sufficient number of bolts, washers and
nuts, making sure that appropriate lengths of bolts are used depending on the flange
thickness and tapping depth. We also used fasteners made out of 316L stainless steel
that has a lower magnetic permeability compared to the standard type 304L, and these
ware clearly labelled and stored separately.

• In-vacuum Screws: If screws are required for fixing components under vacuum,
vented screws should be used, and these should be cleaned together with the rest of the
vacuum components.

• Gasket Clamps: Having a set of these clamps proves useful when dealing with
rotatable or upright mounted flanges.

• Cleaning Solvents: We used acetone, methanol and isopropyl alcohol for cleaning all
of our chamber components, together with distilled water that was used for occasional
rough cleaning of metal components and tools. It is acceptable to use technical grade
(95%) acetone, as it is only used as a first cleaning step. With isopropyl and methanol
we decided to use reagent grade (99%) solvents. It is also helpful to prepare an
appropriate number of wash bottles, beakers, funnels and solvent waste containers.

• Lint Free Wipes: It is essential to use lint-free wipes that are also solvent resistant
when cleaning the chamber components. We used polyester wipes.

• Wrenches and Drivers: It is often required to have duplicate, same size spanner
wrenches for nut and hex-head bolt connections, so these should be prepared as well.
Also, vacuum valves are often operated with spanner wrenches and an appropriate size
should be sourced.

• Aluminium Foil: Use of thicker, heavy duty grade foil is recommended.

• Leak Sealant: Should be used only as a last resort when no further tightening is
possible and trying new gaskets is not an option. If applied before the bakeout,
temperature ratings should be checked first.

• Miscellaneous Tools: This is usually determined by the specific steps in the assembly,
but it should be noted that any tools that come into contact with in-vacuum components
should be thoroughly cleaned and degreased (e.g. we used wire-cutters to cut the
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erbium material into small pieces, a ball-driver for the in-vacuum screws and tweezers
for cleaning the internal surfaces of components with solvent soaked cloth).

• Desk Lamp: Good lighting is essential for examining components and spotting any
possible defects (e.g. damaged CF knife-edges).

• Alignment and Levelling Tools: This can include rulers, measuring tape, spirit levels
as well as any pre-assembled height references or tape for marking positions on the
table.

• Temporary Supports: Any complicated assembly should be done by multiple people,
but it is a good practice to also use temporary support constructions, especially when
installing heavy or bulky components. We used a construction consisting of wires
suspended between two optics posts with a cushioning material on top to support the
Zeeman Slower tube with the magnetic coil when it was being installed between the
two sections of the chamber.

• Component Trays: The assembly process involves a lot of loose, small items.

D.2 Cleaning

The cleaning of the vacuum components was performed immediately prior to assembly.
Despite the fact that the majority of the components are generally shipped clean by the
manufacturers, it is a good practice to clean them at this stage. The standard procedure we
used is outlined as follows:

• Metal parts were washed with acetone and rinsed with isopropyl alcohol.

• All components that could fit into the ultrasonic bath1 were treated with ultrasound for
15 minutes in acetone at room temperature, and then rinsed with isopropyl alcohol.

• Viewports were treated in a similar way, but with methanol rather than acetone, as it is
less aggressive towards AR coatings.

• Immediately before mounting, flanges being connected and the gasket used were wiped
with methanol2 using a lint free tissue.

1Langford Sonomatic 375 ultrasound bath
2acetone should not be used with copper gaskets [138]
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Some components required more thorough cleaning, mostly because they were either
made or altered in the machine workshop. These were treated with up to three extra rounds
in the ultrasonic bath. All parts were first left exposed in air to dry, and then wrapped in
aluminium foil to await installation. Viewports were additionally protected with lint free cloth
over the coated glass. We refrained from cleaning the vacuum valves with large quantities
of solvents, as we were worried about trapping some liquid in their complex construction.
Instead, we have just wiped the vacuum surfaces with solvent soaked lint-free cloth. Finally,
the glass science cell was only rinsed with optics grade methanol (99.9% purity and from a
recently opened bottle) to remove dust particles that were observed on the glass inside the
cell.

D.3 Assembly

The first parts of the chamber to be assembled were the ones mounted directly on the
supporting posts. Once the MOT chamber was placed on the fixed posts, we proceeded
with adjusting the height of the remaining sections to level the chamber evenly. Once the
Zeeman slower tube was installed, connecting the two sections of the chamber, we adjusted
the fine alignment across the long dimension of the chamber and then securely clamped all
the posts to the table. Next, all the simple components were installed, including remaining
valves, crosses and viewpors, leaving the vacuum pumps and the effusion cell oven for the
end. This was primarily done to avoid exposing the pump getter material to moisture for a
prolonged amount of time. The effusion cell oven was carefully assembled and loaded with
8g of erbium.

In the assembly process, we used the regular, OFHC, copper gaskets for all flanges, with
the exception of viewports where fully annealed copper gaskets were used. This is a common
and recommended practice as the softer, fully annealed gaskets prevent the viewport flanges
to be overly stressed, which can cause damage to the glass-to-metal seals. When establishing
CF connections, the flanges were first finger-tightened, with the gasket being held in place
with clamps (if required), and then the bolts were uniformly tightened, going around the
flange in the periodic star-pattern (shown in Figure D.1). When tightening, care was taken to
apply the same torque to all bolts, and also, twisting of no more than a quarter of a turn was
applied in any single instance. The target flange-to-flange gap width depends on the depths
of the grooves housing the knife-edges, but in general it usually lay in the 1−2 mm range.
The two flange surfaces should not establish contact in any scenario, and if this happens, the
connection should be redone with a new gasket.
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Fig. D.1 Star Pattern for Tightening Flange Bolts - a) 6-bolt configuration for CF16 and CF35
flanges b) 8-bolt configuration for CF63 flanges

In parallel with the vacuum system assembly, we had to build and install the magnetic
field compensation cage coils, as they had to be positioned in place before the chamber was
fully connected due to topological constraints. Furthermore, the ZS coils were also wound
on the vacuum tube prior to installation.

D.4 Bakeout

In the preparation for the bakeout, we first removed all the detachable components that are
not compatible with high temperatures. This included the RGA controller body and the
plastic actuator the HV to UHV section gate valve, and only in the first bakeout, the magnet
assemblies on the vacuum pump. We then consulted the specifications of all the remaining
components for the maximum temperature ratings, and decided to bake at 180◦C, to leave
some headroom as the lowest among the temperature limits was 200◦C. Then we proceeded
with installing the bakeout equipment, following this sequence of steps:

• The clamps securing the HV section of the chamber to the optical breadboard were
loosened, to allow for the chamber and its mounts to accommodate thermal expansion
and contraction along the Zeeman slower tube3 resulting from the changing temper-

3Not loosening all the clamps was a mistake as the thermal stresses along the deceptively short chamber
section between the MOT chamber and the ZS mirror region actually opened a leak during the first bakeout run
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ature. Note that all posts carrying the chamber were mounted on ceramic, thermally
insulating pedestal bases4.

• An aluminium tube was mounted around the glass science cell to act as a heat shield,
protecting the glass and the glass-to-metal seal from temperature gradients and abrupt
changes.

• The entirety of the chamber was wrapped in aluminium foil, taking special care that
there is no direct contact between the foil and the coated glass surfaces of viewports.
Where necessary, the foil was secured with Kapton tape.

• A total of sixteen thermocouple sensors were attached to the chamber, making sure
that a good thermal contact is established. These were distributed such that sensitive
areas (Science cell, MOT chamber) have multiple sensors.

• Twelve electric heater tapes were evenly distributed across the chamber, avoiding
overlaps as much as possible. Where overlapping the heater tapes was inevitable due
to the geometry of the chamber, thermally insulating material was used as a buffer
between tapes.

• The whole setup was insulated with a thick layer of fibre glass material, using heat
resistant strings and copper wire for securing it. This was then followed with a layer of
aluminium foil to keep the fibre glass debris contained during baking.

4Thorlabs RS05PC/M



Appendix E

Computer Control and Data Acquisition

E.1 Control System Architecture

The control and synchronisation of the experiment is mainly realised through a set of National
Instruments cards with analog and digital output channels. The system currently employs
two analogue1 and one digital output card2, providing in total of 32 digital and 40 analogue
independently controllable outputs. The cards are mounted in an appropriate NI chassis3, that
will also allow for additional cards to be installed to satisfy the needs of the expansion to a
dual species experiment with potassium. From the software side, the experimental sequences
are generated and sent to the hardware by the Cicero Word Generator [139]. The system
also employs an FPGA chip4 that provides the variable time-base clock signal for the NI
cards, exploiting the functionality offered by Cicero which greatly increases the maximum
sequence length or complexity by reducing the redundancy of the data fed into the cards’
buffer.

E.2 Imaging

We implemented both absorption and fluorescence imaging at the MOT chamber. The former
was used to record atomic density distributions of clouds from the MOT or the ODT, whereas
the fluorescence imaging can be used for probing the flux and the velocity distribution of
the atomic beam, in addition to the imaging of the aforementioned clouds. We use a CMOS

1NI PXIe-6733 - 8 Channel, 16-bit Analog Output Card and NI PXIe 6738 - 32 Channel, 16-bit Analog
Output Card

2NI PXIe-6536 - 32 Channel Digital Output Card
3NI PXIe-1082 8-Slot PXI Express Chassis
4XEM6001 from Opal Kelly. Cicero Word Generator is originally designed to work with the XEM3001

model, and a minor code modification was necessary.
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camera5 with a 1936×1216 pixel array for both types of imaging. The camera is triggered
by a TTL signal from our digital control card, and the acquisition and storage of images into
the database is synchronised from the Cicero Word generator program. This included another
minor modification of the Cicero Word Generator program, performed by my colleague
Lucas Hofer. More details about the data acquisition and storage in our experiment can be
found in [140].

E.2.1 Absorption Imaging

Our absorption imaging system consists of a collimated beam with waist radius of 12 mm
and circular polarisation. It is launched into the chamber from an optical fibre, through
a plano-convex 150 mm lens and a quarter-wave plate. Upon exiting the chamber, the
beam is projected onto the camera with a pair of plano-convex 150 mm lenses in confocal
configuration, yielding unit magnification.

This technique measures the optical density of the atomic cloud along the imaging
direction, and each measurements requires three images to be taken. First, the image with the
light incident on the atoms is taken (Ia), followed by a reference image (Ip) of the probe beam,
without any absorption, and finally, a shot without the laser light is performed, yielding the
background image (Ib). The optical density of the atomic cloud is then evaluated as:

OD = ln
(

Ip− Ib

Ia− Ib

)
(E.1)

The optical density is related to the number density of the atoms through the optical cross
section σ , and assuming the z-axis for the imaging direction, one can write:

n(x,y) =
1
σ

OD(x,y) (E.2)

The optical scattering cross-section of a two-level system is generally given by:

σ =

(
3λ 2

2π

)
1

1+ s+ 4δ 2

Γ2

(E.3)

but as we use resonant light with s∼ 0.1, we can safely assume σ = σ0 =
(

3λ 2

2π

)
.

5Thorlabs DCC3260M
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E.2.2 Fluorescence Imaging

Fluorescence imaging is performed by collecting the photons scattered by the atomic cloud
or beam, and directing them on the camera. We typically use a 2 lens system which produces
a focused image of the region of interest on the camera sensor. The magnification can be
extracted from the lens system geometry, and we have used various values ranging from 1

4 to
1 depending on the purpose.

This imaging technique determines the number of atoms present by estimating the total
photon scattering rate based on the light intensity that reaches the camera. The first step in
the calibration process is determining the solid angle Ω, centred on the atoms, over which
the imaging optical system collects photons. Then, it is necessary to know the conversion
constant between camera pixel counts and the number of incident photos, Ccam. It generally
depends on the quantum efficiency of the camera and sensor gain and binning settings.
Knowing these, along with the imaging exposure time, texp, one can calculate the total
scattering rate corresponding to each pixel of the image I(x,y):

Rtot =
4π

Ω

CcamI(x,y)
texp

(E.4)

E.3 Publication : Atom Cloud Detection and Segmentation
Using a Deep NN

I present the publication titled "Atom Cloud Detection and Segmentation Using a Deep
Neural Network" published in the journal Machine Learning: Science and Technology
where I am listed as the second author. This effort was spearheaded by my colleague Lucas
Hofer, and my contribution to this work involved building, calibration and operation of the
experimental apparatus which provided the dataset for the study, minor contributions to
writing and editing of the manuscript and involvement in responding to referee comments.
The preprint version is given below.



Atom Cloud Detection and Segmentation Using a
Deep Neural Network

Lucas R. Hofer1, Milan Krstajić1,2, Péter Juhász1, Anna L.
Marchant1‡ and Robert P. Smith1

1 Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United
Kingdom
2 Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge
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E-mail: robert.smith@physics.ox.ac.uk

Abstract. We use a deep neural network to detect and place region-of-interest boxes
around ultracold atom clouds in absorption and fluorescence images—with the ability
to identify and bound multiple clouds within a single image. The neural network also
outputs segmentation masks that identify the size, shape and orientation of each cloud
from which we extract the clouds’ Gaussian parameters. This allows 2D Gaussian fits
to be reliably seeded thereby enabling fully automatic image processing. The method
developed performs significantly better than a more conventional method based on
a standardized image analysis library (Scikit-image) both for identifying regions-of-
interest and extracting Gaussian parameters.

Keywords: ultracold quantum matter, machine learning, deep neural networks, Bayesian
optimization, object detection, instance segmentation, image processing

1. Introduction

Deep neural networks have revolutionized data analysis and led to automation of tasks
that previously required human supervision. Image analysis has particularly benefited
through the use of convolutional neural networks (CNNs) [1] and their derivatives
which have allowed for image classification [2, 3], object detection [4, 5] and instance
segmentation [6]. Although many of these neural networks (NNs) were developed for
tasks such as facial recognition by social media networks [7, 8], they have also been
used to identify laser modes [9], classify phases in condensed-matter systems [10, 11],
reduce measurement errors for trapped-ion qubits [12] and process images from cold
atom experiments [13, 14, 15]. In this work, we use an instance segmentation NN (see

‡ Current address: RAL Space, Science and Technology Facilities Council, Rutherford Appleton
Laboratory, Harwell, Didcot, Oxfordshire, OX11 0QX, UK
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Figure 1. Overview of the neural network (NN). An experimental image is initially
fed into a convolutional neural network (CNN) which produces a ‘feature map’ of the
image. The region-proposal network (RPN) uses this feature map to generate regions-
of-interest (ROI) where atom clouds are likely contained. In the ROI alignment stage,
the CNN’s feature map is cropped and resized for each cloud’s ROI before being fed
into three parallel branches. The first branch (ROI) generates refined ROIs, whereas
the second branch (class) classifies the type of atom cloud in the ROI. Finally, the
third branch (mask) generates a segmentation mask corresponding to the 1/e2 contour
of the atom cloud.

Fig. 1) to analyze experimental images containing atom clouds in magneto-optical traps
(MOTs) and optical dipole traps (ODTs).

Neural networks consist of an input layer and an output layer with a number of
intermediate hidden layers which are connected to one another via ‘weights’. Rather
than employing hard-coded algorithms, NNs learn to emulate data they encounter
through training cycles, in which data is iteratively passed through the NN and the
output compared to the ‘ground truth’. The difference between the two is then used
to update the weights between the NN’s layers, thereby improving its accuracy. When
employing supervised training, this requires a dataset which includes both input data
and their associated ground truth values. For object detection NNs, these ground truth
values are rectangular bounding boxes for each object, as well as labels classifying the
object types in the bounding boxes. Instance segmentation NNs build upon object
detection NNs by also requiring pixel-to-pixel segmentation masks in which image pixels
comprising the object have mask values of one, whereas all other pixels have mask values
of zero.

Our dataset consists of images of cold atom clouds in a MOT [16] and an ODT
[17] (see Fig. 2a–c). Atom clouds in these traps form approximately Gaussian density
distributions [18]. Fitting a cloud allows the parameters describing the distribution
(Gaussian parameters) to be extracted and used to ascertain information such as the
cloud’s size and density. Furthermore, by using time-of-flight measurements [19] the
temperature of the atoms can be determined.

A region-of-interest (ROI) [20] centered on the atom cloud is used during fitting
as objects in the image other than the atom cloud can cause an inaccurate fit (e.g. an
atom cloud in another trap or extraneous noise). Additionally, decreasing the fit area
can significantly decrease the fit time when using two-dimensional fitting. Manually
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determining the ROI is time-consuming when analyzing a large number of images and
an algorithmic procedure is often employed, such as taking the ‘center of mass’ and then
iteratively expanding the ROI around this point until the fractional enclosed ‘power’
exceeds some threshold. Another method involves performing connected component
analysis on a binarized version of the image and then measuring the resulting regions
using common image processing libraries [21]. However, if the image is noisy (e.g.
contains fringing), the proposed ROIs will be inaccurate for these types of methods
(Sec. 6).

Here we propose a deep neural network based approach to ROI determination in
which a NN finds the ROI for each atom cloud in an image (see Fig. 1). Furthermore,
the NN differentiates between clouds (classification) in a MOT and those in an ODT and
also outputs a segmentation mask for each cloud from which Gaussian parameters are
directly extracted. The classification feature is particularly useful when the cloud type is
not a priori known from the experimental sequence (e.g. images containing both MOT
and ODT clouds during the ODT loading). Although features such as the position
or aspect ratio can be used for classification with additional manual or experimental
input, the NN needs the image alone (beyond training on an appropriate dataset) to
determine cloud types and so is easily adaptable to other cold atom experiments with
different numbers of clouds or cloud types.

The rest of the article is arranged as follows: Sec. 2 describes the experimental
dataset used for NN training and validation, Sec. 3 describes the training process, Sec. 4
discusses Bayesian optimization [22, 23] of the NN’s hyperparameters [23] and Sec. 5
examines how the Gaussian parameters are calculated from the segmentation mask.
In Sec. 6 we compare our proposed NN method to a more conventional method of
determining both ROIs and Gaussian parameters.

2. Experiment and Dataset

To produce the ultracold atom clouds, erbium atoms are initially trapped and cooled
to ∼20 µK in a narrow-line MOT [24] before being loaded into an ODT formed from a
30W, 1030 nm laser beam focused down to a ∼40µm waist (see Fig. 2). Optimization
of the trap loading involves maximizing the atom number while minimizing the cloud
temperature. The atom number is found by fitting the atom cloud in either a
fluorescence or absorption image§ with a two-dimensional (2D) Gaussian (see Eq. 1)
and then integrating under the curve. The cloud temperature can be determined from
how the cloud width evolves during time-of-flight expansion.

The experimental dataset consists of 260 fluorescence and absorption images
(1936×1216 pixels) along with their ROIs, labels and segmentation masks. Of these,
130 images contain clouds released from the MOT with no ODT present (see Fig. 2b)

§ Experimental images shown in the paper are processed from 2–3 raw images. Fluorescence images
require both an image with atoms and a background image without atoms. Absorption images
additionally require a probe image in which the probe beam is turned on, but no atoms are present.
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Figure 2. Construction of labelled experimental dataset. (a) Experimental setup.
The MOT is formed from six 583 nm laser beams in conjunction with a quadrupole
magnetic field. Atoms trapped in the MOT can be loaded into an ODT formed from
a single 1030 nm laser beam. The fluorescence camera captures the light scattered by
the atoms from the MOT beams. During absorption imaging, a 401 nm probe beam
passes through the atom cloud which absorbs a portion of the light creating a shadow
imaged by the camera. (b) Image of an atom cloud released from the MOT. (c) Image
of an atom cloud released from the ODT. The optical depth is multiplied by six to
increase ODT visibility. (d) Image with both MOT and ODT atom clouds. Each
cloud is labelled and a region-of-interest (ROI) box is drawn around it (white lines).
(e) Segmentation masks for the MOT (hatched yellow) and ODT (solid green) clouds
in (d).

and 130 images contain either just atoms released from the ODT (see Fig. 2c) or images
where atoms released from the ODT and the MOT are both present (see Fig. 2d). We
manually label the atom clouds in the images as ‘MOT’ or ‘ODT’ and draw a ROI box at
the clouds’ edges which we define as the 1/e2 radii along the x and y axes (see Fig. 2d).
This definition prevents the ROI boxes from overlapping when the MOT and ODT are
both present; however, the ROI boxes are also easily expandable when analysis requires
the wings of the distribution.

The manually drawn ROIs were expanded by a factor of two—excepting where the
expanded ROIs would overlap—and the atom clouds inside fit with a 2D Gaussian

I(x, y) = Ib + I0e
−2
(

[(x−x0) cos θ+(y−y0) sin θ]2
w2
x

+
[(y−y0) cos θ−(x−x0) sin θ]2

w2
y

)

, (1)

where I(x, y) is the image intensity, Ib is the background intensity, I0 is the peak
intensity, x0 and y0 are the center coordinates, wx and wy are the 1/e2 radii along the
major and minor axes and θ is the angular orientation of the distribution. To increase
the accuracy of the ROIs used for training, the fit parameters were used to calculate
the 1/e2 radii along the image axes [9] (previously estimated by eye) and the ROI boxes
redrawn using these values. The process of fitting and redrawing the ROI boxes from the
fit parameters was then completed a second time with subsequent iterations neglected
due to an insignificant increase in accuracy.

A segmentation mask was generated for each atom cloud (see Fig. 2e) with the
mask borders placed at the 1/e2 contour of the cloud—calculated from the final fit



Atom Cloud Detection and Segmentation Using a Deep Neural Network 5

MOT 99.8%

ODT 99.4%

(a) (b) (c)

0 0.5 1

Optical Depth

0 0.5 1

Mask Value

0 0.5 1

Optical Depth

Figure 3. Neural network output. (a) Sample image from the validation dataset with
the regions-of-interest (solid white lines), labels and confidence scores predicted by the
NN. (b) The segmentation masks returned by the NN for (a) which, due to the internal
structure of the NN, have values between zero and unity. (c) Reconstruction of (a)
using Eq. 1 and the extracted 2D Gaussian parameters from (b).

parameters; pixels within the 1/e2 contour were set to one, whereas pixels outside were
set to zero. Finally, the dataset was randomly split into a training dataset with 200
images and a validation dataset with 60 images.

3. Neural Network and Training

We use the neural network Mask R-CNN [25] to detect and bound the atom clouds,
as well as to provide segmentation masks for each cloud (see Fig. 3a–b). The NN (see
Fig. 1) begins with the experimental image being fed into a convolutional neural network
base (CNN, ResNet-50 [26]). The CNN’s outputted feature map [27] is then passed into
a region-proposal network (RPN) which generates ROIs where objects are likely located.
Next, these ROIs are cropped from the CNN’s feature map in a ROI alignment stage
and resized to uniform dimensions. The cropped feature maps are then fed into three
parallel branches. The first applies a classifier to determine the object type and give the
confidence of its prediction—which is helpful in determining whether to use the ROI in
post-NN analysis. The second branch gives a more accurate ROI box prediction (see
Fig. 3a) and finally the third outputs a segmentation mask for the object inside the
ROI (see Fig. 3b). Since all three branches share the same base, computation speed is
significantly increased [28] for both training and evaluation.

During training, the NN output is compared to the ground truth (i.e. the expected
output from the training dataset) via a loss function; the loss is then back-propagated
[29] through the NN to adjust the weights between layers and refine the NN model (see
Fig. 4a). The loss function for the RPN stage is L1 loss [30], for the ROI branch it is
Smooth L1 loss [31], the classifier uses categorical cross entropy loss [32] and lastly the
mask branch utilizes binary cross entropy loss [33]. Although the loss can be separately
back-propagated for each branch, a simpler approach is taken here in which the losses
are summed together and then back-propagated to update the weights of the NN [25].
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An epoch denotes a single cycle of training in which every image in the training
dataset is passed through the NN, the loss calculated and the model weights updated.
Increasing the number of training epochs can increase the NN’s final accuracy so long
as the NN does not overfit on the training data. However, due to finite computational
resources, we restrict the training of an individual NN to fifteen epochs—determined to
be sufficient, see below—and instead use Bayesian optimization (BO) to increase the
accuracy of the final trained model (see Sec. 4).

Five hyperparameters, which tune the learning process, are set before the NN’s
training phase. The first is the learning rate which determines the size of the step the
NN takes during stochastic gradient descent [34]. If the learning rate is too low, the
NN will take too long to converge to the minimum of the loss function, whereas if the
learning rate is too high, the NN will not be able to descend to the minimum, but will
oscillate around it or diverge. Since larger learning rates are useful at the beginning of
training and smaller learning rates are useful towards the end, a learning rate scheduler
[35] is employed which decreases the learning rate by some scalar (decay, the second
hyperparameter) after a fixed number of epochs (step size, the third hyperparameter).
The fourth hyperparameter is the momentum which prevents the NN from getting stuck
in a local minimum during training [36]. The last hyperparameter is the batch size—
the number of images simultaneously passed through the NN—and, unlike the other
hyperparameters which are tuned with BO, is fixed to four for all NNs.

The accuracy of the NN is evaluated (see Fig. 4b) using the COCO evaluation
metric which entails calculating the intersection-over-union [37],

IoU =
area (ROIp ∩ ROIgt)

area (ROIp ∪ ROIgt)
, (2)

where ROIp is the ROI prediction from the NN and ROIgt is the ground truth ROI.
Values below a predetermined IoU threshold (e.g. IoU = 0.5) are considered a false
prediction—mislabelling the object class within the ROI is also a false prediction—,
whereas values above are considered a true prediction. A precision recall-curve [38]
is then constructed and integrated to give the average precision (AP) for the given
threshold (e.g. AP50 for the IoU = 0.5 threshold). Finally, the AP is calculated for
ten IoU thresholds (0.50–0.95 with a step size of 0.05) and averaged to give the mean
average precision (mAP)—which is the metric generally reported for object detection.
The mask AP values and mAP can be similarly calculated [39].

The NNs are trained in a Google Colab notebook [40] utilizing a GPU backend and
implemented in PyTorch [41] using the pre-built Mask-RCNN model in the Torchvision
package. Rather than training the NN from scratch, the model weights are loaded
from a network pre-trained on the COCO train2017 dataset [42]—which significantly
reduces the time required to train the network and increases the model’s final accuracy
[43]. Additionally, this transfer learning, complemented by data augmentation (in which
images are randomly flipped horizontally during training), allows us to use a relatively
small training dataset. After each training epoch, the updated NN is evaluated on
the validation dataset which yields the mAP for both the object detection and the



Atom Cloud Detection and Segmentation Using a Deep Neural Network 7

5 10 15 20 25 30

Epoch

20

40

60

80

m
A

P
(%

)

(c)

ROI mAP

Mask mAP

Training Loss

0

2

4

6

8

L
o

ss
(a

.u
.)

Figure 4. Training and validating the neural network. (a) During training of the
NN, images from the training dataset are fed into the NN which outputs the regions-
of-interest, labels and masks. These outputs are compared to the ground truth values
and the loss calculated. The loss is then back-propagated through the NN and used
to update the weights between the NN’s layers. (b) When evaluating the NN, the
validation dataset is used in a process similar to (a); however, the mean average
precision (mAP) for both the object detection branch (ROI) and segmentation mask
branch are calculated rather than the loss. (c) The mAP of the ROI branch (solid
line), the mAP of the segmentation mask branch (dotted line) and the training loss
(dashed line) as a function of the training epoch for the NN trained with the best set
of hyperparameters (see Table 1). The shaded region represents the number of epochs
used during Bayesian optimization.

segmentation mask branches. These two values are averaged together to give the
accuracy of the training epoch (average mAP) and the epoch with the highest average
mAP determines the overall accuracy of the NN model. After using BO to determine
the hyperparameters which give the highest accuracy, we retrain the NN with these
parameters for 30 epochs (see Fig. 4c) and verify that the NN’s accuracy becomes
asymptotic at the 15 epoch mark—with no overfitting seen thereafter.

4. Bayesian Optimization of Hyperparameters

The accuracy of the trained NN is sensitive to the hyperparameters used during training.
In the past, the hyperparameters were tuned through grid search, random search [44]
or by hand; however, in recent years, Bayesian optimization (BO) has been successfully
employed to find the best set of hyperparameters [23, 45]. BO is particularly useful when
trying to find the minimum (or maximum) of a function which is noisy and expensive
to evaluate—such as NN training—thereby making a grid search of the parameter space
impractical [22].

Bayesian optimization takes the function value (cost) at previously evaluated points
and uses a Gaussian process to model the cost as a function of the parameter space [46].
The model also determines the confidence of its predictions in a given region of the
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parameter space: perfect certainty at evaluated points, low uncertainty near evaluated
points and high uncertainty far from evaluated points. The BO loop then determines
where to evaluate the function next by weighing the benefits of evaluating the function
near the model’s predicted minimum (or maximum) or evaluating the function in an
unexplored region of the parameter space [47].

When optimizing our NN training with BO, the average mAP of the NN is
evaluated as a function of the hyperparameter space which consists of the learning
rate, momentum, and the learning rate scheduler step size and decay (see Table 1). As
a warm start, the NN is initially trained and evaluated at five quasi-randomly (Sobol
generated [48]) distributed points (see black squares in Fig. 5a–f). Further evaluation
points (red circles in Fig. 5a–f) are iteratively determined by the BO loop. The Ax
Python package is used for the BO loop as it provides a high level interface to the
BoTorch [49] BO package.

With an increasing number of BO evaluation trials the best achieved average mAP
rises and converges (see Fig. 5g). The best set of hyperparameters (see Table 1) gives
a mAP of 86.3% for the object detection branch—locating 88 of the 89 clouds—and
a mAP of 85.8% for the mask branch. These mAP values are higher than those for
similar NNs trained on the COCO validation dataset [25, 50] which is likely due to
our NN only needing to classify two object types rather than the eighty in the COCO
validation dataset [37], as well as the relatively simple features of the MOT and ODT
clouds. The NN also performs well for clouds with a low signal-to-noise ratio (SNR)
which we define as the cloud’s peak amplitude divided by the standard deviation of the
image’s background intensity; the validation dataset’s nosiest cloud has an SNR of only
2.1 but returns an ROI IoU score of 0.86.

5. Gaussian Parameter Analysis

We can extract the parameters characterizing the cloud’s 2D Gaussian distribution
(see Eq. 1) directly from the NN’s segmentation mask output (see Fig. 6a). Taking
the 1st moments of the mask yields the center coordinates {x0, y0} of the atom cloud,
whereas the 1/e2 radii {wx, wy} and the angular orientation θ can be determined by
calculating the 2nd moments [51] of the mask. The background intensity Ib is calculated
by generating a histogram of the experimental image’s pixel values (where there is

Parameters Lower Bound Upper Bound Log Scale Best Value
Learning Rate 0.0001 0.009 Yes 0.0033
Momentum 0.7 0.92 No 0.86
LRS Step Size 3 15 No 13
LRS Decay 0.001 1 Yes 0.049

Table 1. The hyperparameter search space used during Bayesian optimization along
with the hyperparameter values used to train the NN to the highest average mAP (see
Figs. 4a and 5).
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no cloud) and then taking the peak position (see Fig. 6c). The amplitude of the 2D
Gaussian I0 is calculated by summing the image’s intensity inside the 1/e2 contour to
find the power (P ) and then applying

I0 =
2

(1− e−2)

(
P

πwxwy

− Ib
)
. (3)

This method of extracting clouds’ Gaussian parameters directly from the segmentation
mask was applied to the validation dataset (see Fig. 3c) and the results compared to the
Gaussian parameters extracted via a 2D fit of the experimental image (see Fig. 7, blue
bars). Apart from θ, we normalized the differences to obtain a relative error. The cloud
center {x0, y0} and the cloud radii {wx, wy} were divided by the fitted radii, whereas
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Figure 5. Bayesian optimization of hyperparameters. (a)–(f) The average mAP
of the NN predicted by the Bayesian optimization (BO) model as a function of the
hyperparameters. The plots are 2D slices through the 4D parameter space taken at
the best position (yellow star) for those parameters not displayed. The NN is initially
trained and evaluated at five quasi-random hyperparameter positions (black squares)
after which the BO loop iteratively determines the evaluation points (red dots, size
increases with trial). (g) The best achieved average mAP as a function of the evaluation
trial; the quasi-random trial region is shaded in grey.
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Figure 6. Extraction of Gaussian parameters. (a) NN extraction of the parameters
is performed by first inputting the experimental image into the NN which returns
a segmentation mask for each atom cloud. Applying the first and second moments
(mom.) directly to the segmentation mask yields the center coordinates of the atom
cloud {x0, y0}, its 1/e2 radii {wx, wy} and its angular orientation θ. (b) For
conventional extraction the experimental image is binarized using a thresholding
method (Thres. Bin.) and the binarized image regions labelled and measured
(Label Meas.) using Scikit-image’s regionprops function to yield the ROI as well as
{x0, y0, wx, wy, θ}. (c) Extracting the intensity parameters. The intensity offset Ib
is determined by taking the intensity level corresponding to the peak of a histogram
of the experimental image pixel values (hist. peak). The peak intensity I0 is then
calculated (see Eq. 3) using the power inside the 1/e2 contour and the previously
extracted parameters {x0, y0, wx, wy, θ, Ib}.

the peak amplitude I0 and the background intensity Ib were both divided by the fitted
peak amplitude.

The Gaussian parameters extracted from the NN’s segmentation mask can either be
used directly or as seed parameters for a conventional 2D fit—increasing the likelihood
of fit convergence and reducing the fitting time. Without a seed, the fit time for a
full image (1936×1216 pixels) is approximately 15 seconds on an Intel Xeon 2.2 GHz
processor core. For the validation dataset, this is reduced to an average of 3 seconds
when using the ROIs proposed by the NN—expanded by a factor of two except where
the expanded ROIs would overlap—, which substantially increases the fit speed despite
the NN’s processing time of 0.17 seconds per image using a Nvidia Tesla V100 GPU.
Extracting the Gaussian parameters takes an average of 0.18 seconds, but results in an
average fit speed up of 2 seconds per region when used as a seed. Thus, our method
of determining ROIs and seed parameters using a NN offers a significant speedup in
conjunction with fitting.

6. Comparison with Conventional Analysis

For comparison with the NN, a conventional method is used to find the ROIs and
Gaussian parameters of the clouds (see Fig. 6b). We utilize standard methods based
on Python’s Scikit-image (Skimage) package [21] to pre-process the images, determine
ROIs for the clouds, and extract the Gaussian parameters.
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During pre-processing, a histogram is taken of the image’s pixel intensities. As the
cloud areas are much smaller than that of the overall image an approximately Gaussian
peak corresponding to the image’s background level and noise is seen. The mean µ and
standard deviation σ of a Gaussian fit to this peak are used to define a threshold value
Ithresh = µ+ 3σ [52] and the image is binarized by setting pixels with I > Ithresh to one
and the remainder to zero.

After pre-processing, connected component analysis [53] is applied to the binarized
image which groups pixels of the same value together into ‘regions’ (e.g. an atomic
cloud). These regions are fed into Skimage’s regionprops method which returns both
the ROI coordinates and the geometric parameters {x0, y0, wx, wy, θ} for each region.
ROIs with an area > 1
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NN Mask 88 2.3 3.0 4.7 5.0 6.6 19 4.2
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Figure 7. Gaussian parameter errors. (a)–(g) Histograms of the extracted Gaussian
parameter errors—calculated by comparison to the 2D fit values—for the atom clouds
in the validation dataset. Both the relative errors for the neural network segmentation
mask method (subset, filled blue) and the conventional method (orange) are shown for
the 68 clouds which the conventional method locates. The relative errors for all 88
clouds the NN method locates are also shown (outlined blue). Cloud center coordinates
{x0, y0} and cloud radii {wx, wy} are normalized by the fitted cloud radii. The peak
amplitude and the background intensity {I0, Ib} are both normalized by the fitted peak
amplitude. (h) The root-mean-square error (RMSE) of the Gaussian parameters and
the number of clouds analyzed (#).
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of the clouds under measurement) are removed and the two largest remaining ROIs—if
there are more than one—are taken as the MOT and ODT ROIs since smaller regions
generally coincide with remaining high noise regions.

Applying this method to the validation set locates 68 of the 89 clouds with an
IoU > 50%; this is significantly worse than the NN which locates 88 of the 89 clouds.
The mAP is also calculated, but since the conventional method does not differentiate
between MOT and ODT clouds, all the validation dataset regions are relabelled as
‘cloud’. Even with this simplification, an mAP of only 11.1% is achieved—much lower
than the NN’s object detection mAP of 86.3%. On closer inspection, the conventional
method fails on images with low signal-to-noise ratios (SNR) such as images with
significant fringing.

To determine the Gaussian parameters of the 68 successfully bounded clouds we
apply a numerical scaling factor (to account for our thresholding method [51]) to the
{wx, wy} returned from regionprops and then generate a binary mask from the resulting
{x0, y0, wx, wy, θ} which is used to find the cloud’s background intensity Ib and amplitude
I0 (see Fig. 6c) as in Sec. 5. The parameters are normalized and compared to those from
the 2D fit (see Fig. 7, orange bars). Since the conventional method only recognizes a
subset of the clouds, we quantitatively compare against the NN segmentation method
for the same cloud subset (shown as filled blue bars in Fig. 7); a direct comparison of
the root mean squared errors is shown in Fig. 7h.

When considering both object detection and Gaussian parameter extraction, the
NN method significantly outperforms the conventional method. Additionally, the
conventional method’s efficacy depends on the SNR of the data, whereas the NN is
more robust against high noise levels and fringing since it learns higher level features of
the atom clouds. Furthermore, the conventional method requires manual determination
of the best pre-processing procedures and therefore potentially needs further tuning for
new data; however, when faced with new data the NN simply needs to be retrained with
more labelled data, thus making it effective in a laboratory setting.

7. Conclusion

An instance segmentation neural network (Mask R-CNN) was trained to identify
ultracold atom clouds in magneto-optical traps and optical dipole traps. The neural
network (NN) generates both a region-of-interest (ROI) and a segmentation mask for
each cloud—corresponding to the cloud’s 1/e2 radii—with a mean average precision of
86.3% and 85.8% on the ROI and the segmentation mask branches, respectively. We
show that the Gaussian parameters describing the atom clouds’ distributions can also be
extracted directly from the segmentation masks. Both ROI determination and Gaussian
parameter extraction via the NN are significantly more accurate than a conventional
method based on Python’s Scikit-image library.

With an appropriate training dataset these techniques could be applied to ultracold
atom clouds in other traps such as optical lattices [54, 55] and box potentials [56]; they
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are also directly applicable to laser beam profiling and other machine vision applications
which require analysis of one or more 2D Gaussian distributions.

In the future a custom NN could be created by adding a branch after the
ROI alignment stage which would output the cloud parameters directly. This would
enable the characterization of non-Gaussian density profiles, useful, for example, in
the detection, identification and parameterization of the bimodal clouds seen when a
Bose–Einstein condensate [57, 58] is present.
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Appendix F

Laser Cooling

When an atom finds itself in a (near-)resonant light field and is excited by absorbing a
photon, a momentum unit of ℏk, where k = 2π

λ
is the wave number of the light, is transferred

to it in the direction of the incoming photon. If the subsequent de-excitation happens via
spontaneous emission, the emitted photon carries away another unit of momentum, ℏk, but
this time in a random direction. The net effect of a large number of such events is that each
one will on average transfer a recoil momentum unit of ℏk to the atom in the direction of the
incident light. The randomised force originating from the spontaneous emission events will
additionally lead to diffusive motion in momentum space, and has to be considered in the
context of limits on the lowest achievable temperatures using these methods.

This scattering force, for an atom with a resonant transition of line width Γ, at wavelength
λ (with k = 2π

λ
, again), takes the form [74]:

Fscatt =
ℏkΓ

2
s

1+ s+ 4δ 2

Γ2

(F.1)

where δ is the detuning of light w.r.t. to the resonance and I
Isat

is the ratio of the light intensity

and the saturation intensity of the transition, defined as Isat =
2π2ℏΓc

3λ 3 .
What renders the light scattering force useful for cooling applications is its dependence on

velocity via the Doppler effect, and in most cases magnetic field, through the Zeeman effect.
In both cases the dependence comes in through detuning, which then generally takes the form
δ = δ0− kv+ µB

ℏ where δ0 represents the bare detuning of the light w.r.t. to the resonant
frequency, µ is the transition magnetic moment and B is the magnetic field magnitude.

In the simplest scenario, where a pair of counter-propagating beams is incident onto the
atoms, the effective detuning is different for the two beams, namely δ± = δ0± kv. Then,
provided that δ0 < 0, the combined scattering force will always be directed against the atom’s
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velocity, bringing about slowing. For small velocities, (kv≪ δ ), the scattering force has the
form of a viscous force (the multi-beam saturation parameter s′ is introduced below):

Fscatt =−αv =
8ℏk2sδ0

Γ

(
1+ s′+ 4δ 2

0
Γ2

)2 v . (F.2)

In order to provide cooling in multiple spatial directions, pairs of counter-propagating beams
can be superimposed. The scattering force in this configuration is more difficult to calculate,
as the different beams all contribute to saturating the transition. An approximation valid
in the weakly to intermediately saturated limit, that is frequently employed, is to substitute
the single beam saturation parameter s in the denominator with the combined saturation
parameter s′ that accounts for the total light intensity from all beams [135]:

Fscatt =
ℏkΓ

2
s

1+ s′+ 4δ 2

Γ2

. (F.3)

The fluctuations in the scattering force originate from the randomly directed spontaneous
emission events, as well as the shot noise in the incident beam. The contribution of the
former can be quantified by viewing its effect as a random walk in momentum space with
step length equal to the recoil momentum ℏk, leading to the increase in mean-square velocity
after Nscatt events of

∆
〈

p2
i
〉

spont. =
Nscatt

3
ℏ2k2 (F.4)

along each axis[74]. The contribution from the shot noise has the same ’random-walk’ nature,
but this time only along the direction of the incident beam:

∆
〈

p2
x
〉

shot = Nscattℏ2k2 . (F.5)

Regardless of the beam geometry, the diffusive motion in momentum space will be
governed by diffusion coefficients Di that are proportional to the scattering rate and account
for the geometry of the cooling beams:

1
2

d
〈

p2
i
〉

dt
= Di−

αi

m

〈
p2

i
〉
. (F.6)

In a system with a viscous-type velocity damping (e.g. Equation F.2), the equilibrium
temperature reached can be estimated as:

Teq =
D

kBα
(F.7)



181

where α and D represent averages of the velocity damping coefficients and diffusion coef-
ficients along individual axes. In the case of three orthogonal pairs of cooling beams (3D
molasses), the minimum achievable temperature, called the Doppler temperature, is:

TD =
ℏΓ

2kB
(F.8)

and is reached for δ0 =−Γ

2 and s,s′≪ 1. For the two optical transitions in erbium that we use
for laser cooling in our experiment, the Doppler temperature values are TD,583 nm = 4.6µK
and TD,401 nm = 712µK



Appendix G

Integral and Discrete Transforms for the
Numerical Simulation

G.1 Continuous Fourier and Hankel Transforms

For the 1D Fourier transform (FT) in Cartesian coordinates we use the definition:

f̃ (k) = F{ f}=
∫

f (x)e−ikxdx (G.1)

and its inverse then takes the form:

f (x) = F−1{ f}= 1
2π

∫
f̃ (k)eikxdx . (G.2)

This formalism extends straightforwardly to the 2D and 3D cases, with the normalisation
prefactor in the inverse transform being raised to the appropriate power.

If working in cylindrical coordinate, the Hankel transform (HT) comes useful as it is
adapted for that geometry. The HT of order m ∈Z is defined as:

f̃ (k) = Hm{ f}=
∫

f (r)Jm(kr)rdr (G.3)

and its inverse is:
f (r) = H −1

m
{

f̃
}
=
∫

f̃ (k)Jm(kr)kdk (G.4)

In the special case of m = 0, the Hankel transform is equivalent to a 2D Fourier transform of
a function with radial symmetry, i.e. f (x,y) = f (r) where r =

√
x2 + y2. In fact, this relation
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can be extended to all integer values of m if a function of the form f (r)eimφ if considered:

F2D

{
f (r)eimφ

}
= 2πi−meimφkHm{ f} (G.5)

demonstrating one of the aspects that motivate the usage of this transform.

G.2 Discrete Transforms

G.2.1 Discrete Fourier Transform

To do numerical simulations, we use the discrete equivalents of these and here it is important
to establish connections to the continuous transforms. In the case of the FT, the discrete
version (DFT) is defined as:

f̃l = DFT { f}=
N−1

∑
m=0

fme−2πi ml
N (G.6)

and the inverse discrete transform is:

fm = I DFT
{

f̃
}
=

1
N

N−1

∑
l=0

f̃le2πi ml
N . (G.7)

If a function f (x) sampled at N regularly distributed points such that fm = f (xm) for:

xm =−L
2
+

mL
N

for m ∈ {0, . . .N−1,} (G.8)

then, as long as f̃ (k) is band limited within |k| ≤ πN
L , the DFT from Equation G.6 samples

the FT of f (x) at spatial frequencies:

kl =





2π

Lx
l for 0≤ l < Nx

2
2π

Lx
(l−Nx) for Nx

2 ≤ l ≤ Nx−1
(G.9)

which results in the following relation between the DFT and the FT:

f̃ (kl) =
L
N

ei klL
2 DFT { f}l (G.10)

A recipe for developing a well behaved interpolation function for the purpose of calculat-
ing derivatives can be found in [141].
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G.2.2 Discrete Cosine Transform

The discrete cosine transform (DCT) is a derivate of DFT that can be applied to data with
appropriate parity and periodicity. There are multiple types of DCT, and here we use DCT-I,
that is defined as:

f̃l = DCT{ f}= f0 +(−1)l fN−1 +2
N−2

∑
m=1

fm cos
(

πml
N−1

)
(G.11)

and the inverse discrete transform is:

fm = IDCT
{

f̃
}
=

1
N−1

(
f̃0 +(−1)m f̃N−1 +2

N−2

∑
l=1

f̃l cos
(

πml
N−1

))
(G.12)

One option for the sampling points is:

xm =−L+
mL

N−1
for m ∈ {0, . . .N−1,} (G.13)

This transform is applicable to periodic functions that are even around x0 and xN−1. It can
be derived from an equivalent DFT applied to an extended even function gm defined on a
grid of length 2N−2 such that:

gm = fm for m ∈ {0, . . . ,N−1} (G.14)

gm = g2N−2−m for m ∈ {N, . . . ,2N−3} (G.15)

Since the DCT is derived directly from the extended grid DFT, the associated spatial fre-
quencies are also borrowed from it (remembering that the DFT sampling range is also
doubled):

kl =
π

L
l (G.16)

Finally, the relation to the continuous FT is:

f̃ (kl) =
L

N−1
eiklLDCT{ f}l (G.17)

G.2.3 Discrete Hankel Transform

An efficient numerical approach to perform the Hankel transform on discrete data, that relies
on the Dini series expansion, is laid out in [121]. The first step in the procedure for a grid of
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Nr points extending over [0,b] is evaluating the quantity S that is defined as:

S = 2|J−1
0 (ακ)|

√√√√1+
N−1

∑
n=1

J−2
0 (αn)J2

0

(
ακαn

JN

)
(G.18)

where Jm and αm are the m-th zeros of J0(r) and J′0(r) respectively and κ = Int(N+1
4 ). Then,

the grid points can be defined as:

rn =
αnb

S
(G.19)

and also introducing the size of the inverse space grid to be β = S
b , a similar expression

stands for the spatial frequencies:

km =
αm

b
=

αmβ

S
. (G.20)

Once these have been defined, the procedure for performing the DHT may be stated:

f̃ (km) =
|J0(αm)|b

β

N−1

∑
n=0

Cmn f (rn)|J−1
0 (αn)| (G.21)

f (rn) =
|J0(αn)|β

b

N−1

∑
m=0

Cnm f̃ (km)|J−1
0 (αm)| (G.22)

where Cnm are the elements of the transform matrix

Cnm =
2
S
|J−1

0 (αn)||J−1
0 (αm)|J0(

αnαm

S
) . (G.23)

The results obtained this way correspond directly to the function f (r) and its HT f̃ (k)
evaluated on the grid.

We can define analytic interpolation function for any function based on this transform. Es-
sentially, when spatial samples of the function f (rn) are supplied the following interpolation
is assumed by the HT:

f (r) =
2
b2

N−1

∑
m=0

f̃ (km)J−2
0 (αm)J0(kmr) (G.24)

where αm and km are the same as defined above, and the interpolation is defined over the
domain [0,b]. Similarly, given the spatial samples we can also do the interpolation of the
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Hankel transform of the function:

f (k) =
2

β 2

N−1

∑
n=0

f (rn)J−2
0 (αn)J0(krn) (G.25)

These interpolation can be exploited for evaluations of integrals, where one can write:

∫ b

0
2π f (r)rdr =

2
b2

N−1

∑
m=0

f̃ (km)J−2
0 (αm)

∫ b

0
2πJ0(kmr)rdr (G.26)

and these Bessel function integrals can now be performed analytically:

∫ b

0
2πJ0(kmr)rdr =





πb2 for km = 0
2πb
km

J1(bkm) = 0 otherwise
(G.27)

In some cases, for example when calculating dot products, we would also need integrals
of products of two functions:

∫ b

0
2π f (r)g(r)rdr =

4
b4

N−1

∑
m=0

N−1

∑
n=0

f̃ (km)g̃(kn)J−2
0 (αm)J−2

0 (αn)
∫ b

0
2πJ0(kmr)J0(knr)rdr

(G.28)
the integral here can also be done analytically:

∫ b

0
2πJ0(kmr)J0(knr)rdr = πb2J2

0(αm)δmn (G.29)

where δmn represents the Kronecker delta.
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