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Abstract

This thesis describes the design and installation of a Bragg spectroscopy setup
using a digital micromirror device (DMD). The conducted work involves the
generation of translating sinusoidal lattice potentials for erbium atoms via spa-
tial modulation of a laser beam’s intensity profile, and the subsequent projection
of the sinusoidal pattern using a suitable imaging setup.
For this, we employ the direct projection method using a two-stage demagni-
fication setup, where a custom objective is introduced to account for multiple
types of aberrations.The lower resolution bound of our imaging setup is given
by the objective’s resolution robjective = 2.18 ± 0.19 µm, with the average reso-
lution of the setup being measured at r = 2.55± 0.12 µm over the extent of the
atomic cloud.
The quality of the sinusoidal patterns created by the imaging setup was tested
and improved using an iterative correction process to account for beam inho-
mogeneities and aberrations.
Additionally, the switching dynamics of the DMD were investigated. Clean
switching between consecutive frames with refresh rates up to 10.3 kHz en-
abled a smooth spatial translation.
The performed calibrations and measurements are crucial for the successful
probing of the dispersion relation of dipolar quantum gases in the roton regime
via Bragg spectroscopy.
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1. INTRODUCTION

1 Introduction

1.1 Overview of Ultracold Atomic Systems
The development of quantum theory in the first part of the 20th century contributed enor-
mously to our current understanding of the microscopic world. While simple few-particle
systems can be solved exactly and provide a useful model for several quantum systems,
most phenomena in our modern physics require a many-particle description. Due to the
lack of experimental implementation options, it has remained a difficult task to understand
and exactly solve many-body problems.
The ability to cool down atomic species to quantum degeneracy in combination with tools
to manipulate and control the gases (eg. optically or magnetically) provides the necessary
conditions for feasible many-body experiments. With the invention of laser cooling, a
great window opened in the field of ultracold atoms, leading to the achievement of the first
Bose-Einstein condensate (BEC) in 1995 with rubidium atoms [5] and sodium atoms[12].
Since then, the field of ultracold atoms has proven to be very useful in simulating open
problems of many-body quantum systems. Following the first experimental realisation of
BEC, a number of ground-breaking studies on many-body quantum effects were demon-
strated, such as creating vortices in the superfluid phase [31], [30], matter-wave inteference
of BECs [6], the creation of an atomic laser [8], and the observation of long range phase
coherence [9]. All these measurements rely on the existence of a coherent, macroscopic
matter wave in an interacting many-body system.
An important tool for examining the properties of BECs is Bragg scpectroscopy. It was first
used for investigating degenerate condensates in 1999 by Stenger et al. [41]. The method
employs stimulated two-photon Bragg scattering to allow measurements on the relative
occupation of the different momentum states as well as determining the dynamic structure
factor. Bragg spectroscopy was also used to measure the excitation spectrum of a BEC of
rubidium atoms [40]. The result confirmed the Bogoliubov spectrum well, with a linear
phonon regime for low excitation momenta and a parabolic single-particle regime for higher
excitation momenta.

1.2 Interactions in Dipolar Quantum Gases
A natural requirement for the study of correlated systems are particle interactions. Next
to the contact interaction, which is the most present interaction for conventional quantum
gases, the dipole-dipole interaction (DDI) adds interesting features to observe due to its
anisotropic and long-range nature. Dipole-dipole interactions occur between dipolar parti-
cles. There exist different species that exhibit dipolar properties, such as magnetic atoms,
Rydberg atoms, and heteronuclear molecules. Magnetic atoms are the simplest system
to consider since they can be more straightforwardly cooled and manipulated and have a
longer lifetime. Three magnetic atoms have been cooled to quantum degeneracy: chromium
[20], dysprosium [29], and recently erbium [2], all of which made the DDI available for
examination in recent years.
The competition between the contact interaction and anisotropicDDI gives rise to interesting
effects. The contact interaction is tunable via Feshbach resonances and is normally set to
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1. INTRODUCTION

be repulsive to avoid the condensate collapsing. The dipolar-dipolar interaction however, is
anisotropic and changes sign when varying the relative alignment of two dipoles from the
attractive head-to-tale configuration to the repulsive side-by-side configuration. Therefore,
the relative strength of the two interactions can be changed by employing magnetic fields
and thereby tuning the Feshbach resonance, changing the particle density, and by altering
the trap geometry.
In 2003, Santos et al. [37] theoretically predicted the so-called roton-maxon character of the
excitation spectrum of dipolar quantum gases in contrast to the Bogoliubov spectrum found
for non-dipolar BECs which interact via the contact interaction only. Rotons are elementary
excitations that manifest themselves as a local minimum in the dispersion relation (energy-
momentum relation). The roton-maxon behaviour of the dispersion relation is known from
condensed matter systems and has previously been observed in superfluid helium. Landau
[27] was the first to relate the roton momentum (the momentum where the energy minimum
of the excitation spectrum occurs) to the interparticle distance qrot = 1/d. Fig. 1 shows the
dispersion relation for a dipolar quantum gas that exhibits the roton-maxon behaviour.

Figure 1: Theoretical excitation spectrum of a dipolar BEC. The top curve shows no rotonminimum,
as expected for a case where the contact interaction dominates. The bottom curve shows a roton-
maxon spectrum and occurs when the dipole-dipole interaction dominates. The minimum is found
at q = 1.4/l0, where l0 is the harmonic oscillator length of the tight confinement motion. The figure
is adapted from [37].

Generally, the excitation energy of condensates strongly depends on the interparticle inter-
actions. A dipolar BEC requires a trapping geometry which has a strong confinement in at
least one spatial direction (pancake or cigar shaped traps) because in case of no confinement,
a head-to-tail configuration of dipoles would lead to a collapse of the condensate due to
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1. INTRODUCTION

attractive DDI. Santos et al. [37] showed that in a dipolar BEC trapped in a pancake ge-
ometry, the dipole-dipole interaction strength has a special q-dependence. Momenta q that
favour an attractive dipole-dipole interaction lead to a minimum in the excitation spectrum.

The roton minimum of dipolar BECs is given by qrot ≈ 1/lz, with lz =
(

}
mωz

)0.5
being the

harmonic oscillator length for the tightly confined motion and ωz the trapping frequency of
the confined trapping direction.
Chomaz et al. [11] observed the first spontaneous occupation of the rotonmode of condensed
erbium in 2017 by tuning the relative strength of contact to dipole-dipole interactions and
thereby reducing the roton excitation energy to zero. Two years later, Petter et al. [33]
measured the excitation spectrum of condensated erbium using Bragg spectroscopy. They
found the relation between the relative strength of contact and dipole-dipole interaction to
the magnitude of the roton dip. They also found a stability condition for a dipolar BEC.
Both experiments were conducted with a cigar-shaped trapping geometry.
This thesis describes the preparation of a Bragg spectroscopy setup in order to measure the
excitation spectrum of condensed erbium in a homogenous quasi 2D-trap, thus enabling us
to confirm the theoretical predictions of Santos et al. [37]. The challenge of exciting rotons
in a quasi 2D trap is yet to be mastered and will give insight into the physics of radial rotons.
Moreover, these measurements will be combined with critical velocity measurements of the
condensate and BEC transition temperature measurements.
The Bragg spectroscopy setup will be prepared and tested on a separate setup before being
implemented with the erbium experiment. A digital-micromirror device (DMD) is used to
generate the Bragg potential which is projected to the atoms using a demagnifying imaging
system.
In chapter 2, we will present an overview of the erbium atom and the current status of
the erbium experiment in Oxford. Chapter 3 gives an outline of practical requirements for
performing Bragg spectroscopy with a DMD. It also shows the theoretical foundations for
the Bragg spectroscopy principle and the optical imaging system. Chapter 4 introduces
the imaging setup and measurements of its resolution. In chapter 5, we explain how
the patterns are binarised and improved using two algorithms. Moreover, the resulting
measurements of different optimised patterns are presented. Chapter 6 explains the different
operational modes of the DMD. This is supplemented by the results of the switching
dynamics measurements using the two operational modes. Lastly, we conclude the thesis
in chapter 7, where we summarise the results and give an outlook to the next steps on the
route to measuring the dispersion relation of erbium.
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2. COLD ATOM MACHINE

2 Cold Atom Machine

2.1 Properties of Erbium
Our experiment investigates the properties of an ultracold sample of erbium atoms. Erbium,
a rare-earth atom, is part of the lanthanide series and has the atomic number 68. In this
experiment, the second most abundant isotope of erbium is used, 168Er. It is one of five
bosonic isotopes of erbium, and there exists one additional fermionic isotope [13]. Among
other elements in the lanthanide series, erbium possesses one of the strongest magnetic
dipole moments of 7 µB. The high magnetic dipole moment results from its electronic
structure, where the electronic configuration is given by

[Xe]4 f 126s2,

and [Xe] denotes the electronic configuration of xenon. The electrons in the 4 f shell lead
to a total electron spin of S = 1 and orbital angular momentum of L = 6, resulting in J = 6
and the term symbol

3H6.

Its high magnetic dipole moment in combination with the high number of natural iso-
topes makes erbium an attractive element for the investigation of long-range dipole-dipole
interactions (DDI).

2.2 Laser Cooling Process
We will examine the experimental route to generate a cold sample of erbium atoms in more
detail in this chapter. More information on this experiment can be found in the first year
reports of Milan Krstajić [26] and Péter Juhász [23].
The experiment is conducted in a vacuum chamber that consists of two parts which are
separated by a gate valve. In the experiment, a hot beam of gaseous erbium is created in the
“high vacuum chamber” with subsequent transversal cooling before it enters the “ultra-high
vacuum chamber” where it undergoes Zeeman slowing and finally will be captured in a
magneto-optical trap (MOT). Fig. 2 shows the vacuum chamber including the different
laser cooling steps, and Fig. 3 shows a photograph of the vacuum system and the oven.
Erbium exhibits a complex energy structure with many allowed electric-dipole transitions
due to its two-electron vacancy in the 4 f shell. The two major electric-dipole transitions
used for laser cooling are the 401 nm and the 583 nm line. The 401 nm line has a natural
linewidth of ∆ν= 29.7 MHz and is more than 150 times bigger than that of the 583 nm line
(∆ν= 190 kHz), see [22]. Therefore, the 401 nm line is used for the transversal cooling and
Zeeman slowing, whereas the 583 nm line is used for the MOT and the Bragg spectroscopy
[7].
Atomic erbium is solid at room temperature [14], so we make use of a high-temperature
effusion oven to heat the sample to 1200◦. As a result, an atomic vapour of erbium atoms is
loaded into the vacuum system. The velocity distribution of the hot sample has a maximum
at vmax =

√
3kBT

m = 465 m/s.
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2. COLD ATOM MACHINE

Figure 2: Top view of the experimental vacuum chamber. The left part shows the ultra high vacuum
section, which is separated from the high vacuum section on the right by a valve. Atoms enter
the setup from the erbium oven and are transversally cooled before entering the ultra high vacuum
section. Additional longitudinal cooling in the Zeeman slower prepares them for capturing in the
MOT chamber. Then the atoms are loaded into the ODT and transported into the science chamber
for evaporation. The figure is adapted from [23].

The first cooling step is reducing the transversal velocity spread of the atomic beam to allow
the atoms to pass the valve in a collimated beam and increase the loading effiency into
the ultra high vaccum section. The transversal cooling is achieved through the scattering
light force exerted by two pairs of counter-propagating 401 nm laser beams. The beams are
intersecting the atomic beam orthogonally and are aligned at right angles to each other.
Next, the collimated beam enters the second vacuum section and the Zeeman slower, where
cooling in the longitudinal direction slows the atoms down to about 30 m/s. A Zeeman
slower cools the atomic beam via momentum transfer through scattering off a collinear,
counter-propagating 401 nm laser beam. For the Zeeman slowing process however, an
additional spatially-dependent magnetic bias field is required to shift the atomic transition
constantly back to resonance using the Zeeman effect. This is necessary because theDoppler
shift induces an increasing detuning from resonance when decreasing the atomic velocity.
After exiting the Zeeman slower, the atoms are loaded into a narrow-linewidth MOT. The
capture velocity of our MOT cuts off at 10 m/s [17], but further cooling in the Zeeman
slower would lead to significant atom losses in the transversal direction. The parameters of
Zeeman slowing and MOT loading are tuned to maximise the MOT loading effiency.
The MOT is placed in the MOT chamber in the center of the ultra-high vaccum chamber.
It is made up of three pairs of counter-propagating 583 nm laser beams paired with a
uniform magnetic gradient field, which is generated by a pair of coils in anti-Helmholtz
configuration. This results in an effective force pointing towards the center of the MOT and
thus enables cooling and trapping in parallel.
After loading the MOT, it is compressed to the cMOT stage by decreasing the beam power
and detuning. MOT cooling on the 583 nm transitionwould in principle enable temperatures
as low as the Doppler limit, given by TD =

}Γ
2kB
= 4.6 µK [28]. The final temperatures

reached in the cMOT are around 30 µK, which is significantly higher than the Doppler
limit. This is probably due to the frequency fluctuations of the 583 nm laser beam.
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2. COLD ATOM MACHINE

Figure 3: Photograph of the experiment. The oven and high-vacuum section is on the right and the
ultra-high vacuum section, including the MOT chamber, are on the left.

2.3 Optical Trapping of a BEC in a Quasi 2D Uniform Potential
In order to cool the atomic cloud to quantum degeneracy, the atoms are captured in an
optical dipole trap (ODT). Optical dipole traps confine atoms in the attractive potential of
far red-detuned laser beams. The red detuning of the laser beam creates an attractive dipole
potential for the atoms such that they are drawn to regions of high intensity.
This experiment makes use of a 45 Watts 1030 nm laser focused to a waist size of 35 µm.
The atoms are transferred to the ODT from the cMOT. Currently, loading efficiencies of
10 % are reached. The focal point of the ODT beam overlaps with the MOT position in the
center of the MOT chamber.
In the future, the atomic cloud will be moved to the science cell because optical access is
possible from wider angles. This transport is enabled by using a pair of tunable lenses,
that allow movement of the atomic cloud over 50 cm. Prior to the transport, the atoms
will be pre-cooled to avoid atom spilling. Then the atomic cloud will be moved by slowly
displacing the position of the ODT beam’s focal point towards the science cell, where
cooling to quantum degeneracy will be performed.
Finally, the BEC will be loaded into the quasi 2D pancake trap. The trap consists of
an attractive 1030 nm sheet beam which provides confinement in the vertical direction
combined with a repulsive potential of a blue-detuned box beam. The box beam is created
by spatially modulating the intensity profile of a 371 nm laser using a spatial light modulator
(SLM). The combination of the repulsive box potential and the attractive sheet beam
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2. COLD ATOM MACHINE

Figure 4: Sketch of 2D pancake trap. The red cuboid indicates the attractive sheet beam and the
blue cylinder shows the repulsive box potential. In combination, a uniform quasi 2D pancake trap
results (purple disk).

generates a uniform trapping potential, where we will perform the measurements suggested
in Sec. 1.2. Fig. 4 depicts the described trapping configuration.
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3. REQUIREMENTS FOR PERFORMING BRAGG SPECTROSCOPY WITH A DMD

3 Requirements for performing Bragg Spectroscopy with
a DMD

3.1 Optical Dipole Potentials
An external electrical field induces an electric dipole moment in an atom. The induced
dipole moment is proportional to the polarisability of the atom and the electric field,
d = αEL. Here, α is the complex polarisability, which depends on the driving frequency
ωL. If the field frequency ωL is far detuned from the atomic resonance ωatom, the neutral
atom will interact with the light field in a conservative manner. This means the atom will
feel a conservative potential that can be used for trapping, cooling, or exciting the atom.
The resultant dipole force can be written as [16]

Fdip = −∇Udip, (1)

where the potential is given by

Udip = −
1
2
〈d · E〉 = −

1
2ε0c

Re(α)I. (2)

For a field detuning ∆ from resonance much bigger than both the Rabi frequency Ω = d·EL
}

and the transition rate Γ, we find that

Udip =
}Ω2

4∆
=

}Γ2

8∆
I

Isat
, (3)

where Isat is the saturation intensity of the transition [39].
Eq. 3 shows us that any abritrary spatial potential can be created by modulating the light
intensity. This is a useful tool for the field of ultracold atoms. Wewill implement this tool for
the Bragg spectroscopy of dipolar quantum gases. The electric field intensity is modulated
using a digital micromirror device (DMD). This chapter will give more information on the
quantum optical background to Bragg excitation using a DMD and the optical limitations
given by the imaging system.

3.2 Theoretical Background to Bragg Spectroscopy
In this section, we present the theorectical background of measuring the excitation spectrum
of BECs using Bragg scattering. The momentum dispersion of a dipolar BEC is presented
in Sec. 1.2. A dipolar quantum gas is excited by diffraction of a moving sinusoidal lattice
potential. Excitation only takes place if the transferred energy and momentum to the con-
densate both match those given in the dispersion relation. After exciting the BEC with a
Bragg pulse, a particular momentum state is populated if the excitation is close to resonance.
The response to the Bragg pulse is given by the density of the population transfer from the
ground state to the probed momentum state and can be measured using time-of-flight (TOF)
spectroscopy. In this section, we will closely follow the work in [19] and [32].
Bragg scattering can be described as a two-photon Raman process involving paired stim-
ulated absorption and emission. We use a two-level atom with two momentum ground
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3. REQUIREMENTS FOR PERFORMING BRAGG SPECTROSCOPY WITH A DMD

Figure 5: Stimulated Raman process of a Bragg scattering event in a dipolar quantum gas. An
atom, initially at rest, absorbs a photon with energy ω1 and reemitts a photon with energy ω2 where
the energy difference between the two photons is given by ω = ω1 − ω2 = EBragg/}. In this process
the momentum q and the energy ω is transferred to the atom. The figure is taken from [33].

states, denoted as |g, pi〉, |g, pf〉 and |e, pi+}k1〉 with the initial and final momentum states
given by pi and pf = pi + qr as well as the momentum of the excited state pe = pi + }k1.
In the Raman picture, |g, pi〉 and |g, pf〉 are coupled to the excited state |e, pe〉 by two
far-off resonant photons with frequencies ω1 and ω2. Momentum transfer into |g, pf〉 takes
place through stimulated absorption of photons with frequency ω1 and subsequent coherent
stimulated emission of photons with frequency ω2 via a virtual level detuned from |e, pe〉
by ∆, see Fig. 6. The atoms gain a recoil momentum in this process, which is given
by qr = 2}k sin( θ2 ) and depends on the magnitude of the wavevector of the laser beams
|k1 | ≈ |k2 | = k and the angle of intersection θ of the two beams. The required excitation
energy EBragg = ε(pi + qr) − ε(pi) is given by the dispersion relation of the atomic system.
A succesful scattering event takes place if the detuning between the two photons matches
the required energy transfer:

EBragg = }(ω1 − ω2) = ε(pi + qr) − ε(pi), (4)

which in the case of the atoms being at rest initially reduces to EBragg = Er, where Er is the
recoil energy. This gives a direct result for the recoil energy and thus enables us to measure
the excitation spectrum. The process is displayed in Fig. 5.
By comparing a moving lattice potential with the interference pattern created by two laser
beams with a detuning of ∆ω intersecting at an angle θ we can find an alternative approach
for describing the Bragg excitation.
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The two laser beams are described by the following electric fields:

E j (r, t) = ε j E0,j cos(k j · r − ω j t), j = 1, 2, (5)

where k j and ω j are the wavevector and wavenumbers of the two fields, whereas ε j and E0,j
are the unit polarisation vector and the amplitude of the fields. The interference pattern is
given by the amplitude sum of the two electric fields Etot = E1 (r, t) +E2 (r, t) and leads to
the total intensity

I (r, t) =
ε0c
2
|E1 (r, t) + E2 (r, t)|2. (6)

Assuming equal amplitudes and polarisation for both fields and neglecting the fast oscillating
term this can be rearranged to

I (r, t) = ε0cE2
0 cos

(
1
2
(∆k · r − ∆ωt)

)2
, (7)

with ∆k = k1 − k2 and ∆ω = ω1 − ω2.
Eq. 7 describes a moving lattice potential generated by the interference of two intersecting
beams with a period d = 2π

∆k and a velocity v = ∆ω
∆k .

Moving back to the Raman picture allows us to find an expression for the Rabi frequency
ΩR of the transition |g, p〉 → |g, p+q〉. For a more detailed derivation please refer to [10]
and [39]. We use a three-level Λ system as a starting point and reduce the system to an
effective two-level atom, see Fig. 6.
The following wavefunction describes our three-level system:

|Ψ(t)〉 = c1(t)e−
iEpt
} |g, p〉 + c2(t)e−

iEp+qt
} |g, p + q〉 + ce(t)e−i(ω1+∆1+

Epe
} )t |e, pe〉. (8)

The Hamiltonian of the three-level atom interacting with two light fields consists of two
parts, the atomic part and the interaction part:

HA =
p2

2m
|g, p〉〈g, p| +

(p+q)2

2m
|g, p+q〉〈g, p+q| +

(
}(ω1 + ∆1) +

pe
2

2m
)
|e, pe〉〈e pe |, (9)

where the zero energy level is assigned to the state |g,0〉. In the dipole and rotating wave
approximation, Hint is written as:

Hint = −d̂+ · E− − d̂− · E+, (10)

where d̂ = −er̂ is the electric dipole operator and E the total electric field as described
above. Please note that in the following we set |g, p〉, |g, p + q〉 and |e, pe〉 as |g1〉, |g2〉

and |e〉, respectively, and use the definition δ = ∆1−∆2
2 and ∆ = ∆1+∆2

2 . Using the expression
for the Rabi frequency

Ω j :=
−〈g j |ε j · d|e〉E0,j

}
, j = 1,2 (11)

we find for the interaction Hamiltonian

Hint =
}Ω1

2
(
e−i(k1·r−ω1t) |g1〉〈e| + e+i(k1·r−ω1t) |e〉〈g1 |

)
+
}Ω2

2
(
e−i(k2·r−ω2t) |g2〉〈e| + e+i(k2·r−ω2t) |e〉〈g2 |

)
.

(12)
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Figure 6: Three-level atom with excited state |e〉 and ground states |g, p〉 and |g, p + q〉. The laser
frequencies are detuned by ∆1,2 from the transition frequencies.

We use the unitary transformation to move into the rotating frame:

H̃rot =ÛĤÛ† + i}(∂tÛ)Û†

Ψ̃(t) = ÛΨ(t)

Û = ei(
Ep
} +δ)t |g1〉〈g1 |+ei(

Ep+q
} −δ)t |g2〉〈g2 | + ei(

Ep+}k1
} +ω1+δ)t |e〉〈e|.

(13)

After moving to the rotating frame, we find the following Hamiltonian :

H̃A = }
(
∆|e〉〈e| + δ |g, p + q〉〈g, p + q| − δ |g, p〉〈g, p|

)
, (14)

H̃int =
}Ω1

2
(
e−ik1·r |g1〉〈e| + e+ik1·r |e〉〈g1 |

)
+
}Ω2

2
(
e−ik2·r |g2〉〈e| + e+ik2·r |e〉〈g2 |

)
. (15)

The wavefunction can now be written as

Ψ̃(t) = c1(t)eiδt |g1〉 + c2(t)e−iδt |g2〉 + ce(t)e−i∆t |e〉. (16)
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Using the time-dependent Schrödinger equation i}∂tΨ̃ = H̃Ψ̃, we find the equation of
motion:

i}
dc1

dt
=

}Ω1

2
ce(t)e−i∆1t · e−ik1·r (17)

i}
dc2

dt
=

}Ω2

2
ce(t)e−i∆2t · e−ik2·r (18)

i}
dce

dt
=

}Ω1

2
c1(t)ei∆1t · eik1·r +

}Ω2

2
c2(t)ei∆2t · eik2·r. (19)

The equations of motions show a coupled set of differential equations which are difficult to
solve. We will not develop the result in the three-level system because the excited state is
damped to equilibrium instantaneously and not actually populated during the transition.
In the case of a Raman transition, the detuning from the excited state ∆ is a lot bigger
than the energy splitting between the two momentum ground states, the detuning from the
resonant case (δ = 0), and the individual Rabi frequencies:

|Ep+q − Ep | � ∆, |δ | � ∆ and Ω1,2 � ∆.

Due to the large single photon detunings we can reduce the the three-level system to an
equivalent two-level system using the adiabatic elimination method. The steps are carried
out in [35] and do not add much to the understanding of the conducted work, which is why
we do not discuss them in the scope of this thesis. The resulting two-level Hamiltonian is
given by

Heff = − }
(
(δ +

Ω2
1

4∆
)|g1〉〈g1 | + (−δ +

Ω2
2

4∆
)|g2〉〈g2 |)

+
ΩR

2
(ei(k2−k1)·r |g1〉〈g2 | + ei(k1−k2)·r |g2〉〈g1 |)),

(20)

with
ΩR =

Ω1Ω2

2∆
. (21)

The populations of the states in the two-level system coincide with the populations of the
two ground state, which are coupled with the effective Rabi frequencyΩR. This result shows
us that the effective Rabi frequency for a two-photon Raman transition |g1〉 → |g2〉 is given
by the depth of the moving lattice. Generating the moving lattice with two overlapping
beams is equivalent to any other method.
From the form of Heff and its non-diagonal terms it becomes obvious that the transitions
|g1〉 → |g2〉 and |g2〉 → |g1〉 are accompanied by a momentum shift of k1 − k2 and k2 − k1,
respectively.
Finally, we want to give an estimate of the laser intensities required to generate a Rabi
frequency as high as ΩR = 2π · 1 kHz such that a full π-pulse has a duration shorter than
0.25 ms and we are not limited by lifetimes of the condensate. As mentioned in Sec. 2.2,
the 583 nm transition is used for the Bragg spectroscopy where we introduce a detuning of
∆ = 2π · 360 MHz from resonance. Eq. 3 shows the relation between the individual Rabi
frequencies Ω1,2 and the laser intensity. This is related to the effective Rabi frequency ΩR
through Eq. 21. With the given absorption rate of Γ = 2π · 190 kHz we obtain a required
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laser intensity of I
Isat
= 40. The saturation intensity is given by Isat = 0.13 mW

cm2 , see [22]. To
translate the laser intensity into power we assume an illumination area of the atomic cloud
size with a radius of r = 100 µm, so P = I · A = 1.6 µW. This estimate shows that very
small laser powers are necessary to drive a full π-pulse in a duration of only 0.25 ms.

3.3 Bragg Potentials Created with a DMD
There are two ways to use a DMD to create the Bragg potential and induce a transition into
a higher momentum state:

• Direct projection of a moving sinusoidal pattern.

• Holographic projection of a sinusoidal inteference pattern.

In both cases a single laser beam with a detuning ∆ from resonance can be used to create
the potential instead of using two laser beams with a detuning from one another. This
has the advantage of not having to manually control a second frequency and the angle of
intersection. A DMD can create binary patterns. When a laser beam is reflected from the
DMD, this binary pattern is imprinted into the laser beam’s intensity. Moreover, the DMD
can create whole sequences of patterns and switch between them. This tool will be used to
produce moving light potentials in the atom plane.

3.3.1 Direct Projection

With the direct projection method, the DMD creates a sinusoidal pattern and projects it
onto the atomic plane directly. In this section, we will link the relevant parameters for this
process with the resulting momentum and energy transfer. More detailed information on
the experimental implementation can be found in [21].
As mentioned in Sec. 3.2, the resulting momentum and energy transfer depends on the
wavelength of the pattern and the speed at which it moves. The sinusoidal pattern can be
generated by the DMD directly. The lowest achievable wavelength will put an upper bound
to our momentum range. This limit will be given by our minimum resolvable feature of our
diffraction-limited imaging system:

λmin = rmin =
2π
∆kmax

. (22)

The sinusoidal pattern has to move across with a velocity v. It takes N steps to complete a
movement of the pattern by one period. N needs to be sufficiently large to ensure a smooth
pattern movement. The step size of each move is:

s =
λ

N
. (23)

Assuming that the DMD changes frame with the refresh rate R, the speed of the pattern is
given by:

v = R · s = R ·
λ

N
. (24)
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This can be used to find an expression for the transition frequency:

ω =
v

∆k
=

2πRλ
Nλ

=
2πR

N
. (25)

The formula shows clearly that the maximum available transition frequency only depends
on the maximum refresh rate and the number of steps used to create a movement of λ.
Because N is fixed through the requirement to create a smooth movement, R determines the
maximum frequency.

3.3.2 Holographic Projection

A holographic pattern is created in the atom plane by placing the DMD in the Fourier
plane of the atoms. A sinusoidal pattern is the result of the Fourier transform of two delta
functions, that are symmetrically positioned around zero. Extensive information on the
experimental implementation can be found in [33] and [34].
Essentially, two delta functions convolved with a Gaussian envelope function are created
with the DMD and will then be focused onto the atom plane. An additional grating
structure is imprinted on the patches to set a phase relation between the two beams. The
delta functions create an infinite sinusoidal pattern whereas the Gaussian envelopes lead to
a spatial restriction of the pattern and can account for intensity dependent inhomogeneities.
A Gaussian envelope is also required to ensure the reflection of a minimum amount of laser
light. As a result, two degenerate light beams are focused onto the atomic plane where they
interfere and create the sinusoidal pattern. In this case, the intersection angle of the two
beams will determine the periodicity of the sine wave and thereby the resultant momentum
transfer

∆k = 2kL sin(
θ

2
). (26)

This formula shows that the maximum transferable momentum in a Bragg pulse depends
on the wavelength of the laser light and the maximum achievable angle of intersection.
Normally, the imaging setup sets an upper bound on the maximum angle of intersection
with its numerical aperture. The angle can be varied by changing the distance of the two
patches on the DMD screen.
Just interfering two degenerate beams would lead to a static sinusoidal pattern. However, it
is possible to create an artificial frequency shift of one of the two beams. Here, we use the
fact that the frequency is proportional to the time derivative of its phase

∆ω =
∂φ

∂t
, (27)

such that employing a time dependent phase shift in one of the two patches relative to the
other will lead to a frequency shift. This can be achieved by generating a sequence of
changing patterns with the DMD. The phase is shifted by shifting the grating across the
patch over a fraction of a period. A number of N frame changes are required to shift the
grating by one period, such that a phase shift of

δφ =
2π
N

(28)
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is created in one step. Considering frame changes with a repetition rate of R leads to a
frequency offset of one of the beams relative to the other by

ω =
2πR

N
. (29)

This result is equivalent to the one worked out for the direct projection method (see Sec.
3.3.1).
As a result, bothmethods enable us to generate equal maximumBragg transition frequencies
and depend on the maximum switching rate of the DMD and the number of frames per
period movement. The difference between the two methods lies in the maximum available
Bragg momentum and depends on the imaging systems for both options. This will be
studied in more detail in Sec. 4.1.
Finally, we want to investigate the parameters our imaging setup and switching rate need to
perform to access the interesting region of the dispersion relation, where we take the results
from [33] and [37] as a reference point.
The highest momentum state probed is given by qlz = 1.7 whereas the roton minimum
was found in the interval qlz = [1.27, 1.41]. In the Innsbruck experiment, the harmonic
oscillator length along the tight confinement is given as lz ≈ 0.5 µm, which translates to a
maximum momentum qmax = 3.4 · 106 µm−1 and requires a minimum pattern wavelength
of λmin = 1.8 µm.
The highest energy transferred is given by ω

ωz
= 2, with ωz = 2π · 256 Hz. This results in

an excitation energy of ωmax = 2π · 512 Hz. A value of N = 9 was used to obtain a smooth
transition, which is the same value as used in [21]. This would require a maximum DMD
refresh rate of Rmax= 4.6 kHz.
These are first indications of where the relevant region in the dispersion relation lies.
Nevertheless, the target is to generate a setup with the highest possible resolution and
switching rate. Notice that Petter et al. use a different trap geometry (cigar-shaped)
than our future experiment (pancake-shaped) which influences the excitation momenta
and frequencies. Moreover, the excitation momentum and energy depend on the trapping
frequencies which are subject to change according to experimental conditions.

3.4 Optical Limitations
In the last section, we derived that themaximumBraggmomentumdepends on the resolution
of the imaging system. This section givesmore insight into the effects limiting the resolution
of an imaging system, which are either of technical or fundamental origin. We will start
with investigating the latter.

3.4.1 Diffraction-Limiting Angular Resolution

The minimum limit to the resolution of an optical system is given by its diffraction limit
(see [18], [24] and [43]) which results from the nature of image formation.
Let’s consider an object that is placed in the back focal plane of a collimating lense which
is illuminated by a light beam. The object will imprint some transmission function into the
light beam f (x, y). The wave components of the object propagate towards the lens in the
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Figure 7: Fourier transformation in a lens. It is shown how different propagation angles in the object
plane are transformed into spatial coordinates in the focal plane by a lens. The figure is adapted
from [36].

form of rays in different directions . The lens will refract the rays and thereby translate the
different angles into spatial positions. Therefore, it generates the spatial Fourier transform
of the object transmission function in the beam profile, up to a phase curvature term. This
term disappers in the Fourier plane of the lens, which is exactly at the focal point:

F(u, v) =
1
(2π)2

∫
A

f (x, y)e−i2π(ux+vy)dA (30)

where u and v are the spatial frequencies and A is the aperture area. Eq. 30 shows that an
infinite aperture sized lens would generate the plain Fourier transform of the object whereas
a limited aperture size filters out higher spatial frequencies. The spatial frequencies in the
Fourier plane relate to the spatial coordinates (x′, y′) as follows:

u =
x′

f λ
(31)

v =
y′

f λ
(32)

with the focal length f .
Considering an object transmission function of f (x, y) = 1 with a circular aperture with di-
ameter D leads to the following intensity distribution in the far-field (Fraunhofer) diffraction
pattern:

I(ρ) = I0
[2J1(2πρD/2)

2πρD/2
]2 (33)

where J1 is the Bessel function of first order and ρ is the spherical spatial frequency. At a
distance d′ from the lens, the spatial frequency is given by:

ρ =
sin(θ)
λ
≈

r′

d′λ
(34)

with r′ being the radial distance from the optical axis and θ the diffraction angle. The
pattern that is created in the far-field through a circular aperture is called the Airy disk. In
the focal plane, the first minimum is given at a radial distance from the optical axis by

rRayleigh =
1.22λ f

D
=

1.22λ
n sin(θ)

, (35)
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where θ is half of the largest angle that can be collected from the lens. This gives a definition
for the numerical aperture of an optical element: N A = n sin(θ). The first minimum from
the optical axis is called the Rayleigh resolution. An object that creates two points in the
image plane with a minimum distance rRayleigh can still be resolved.

3.4.2 Aberrations

There are additional factors that worsen the resolution of an imaging setup. Wewill consider
effects that lead to distorted or blurred images called aberrations.
One distinguishes between two types of aberrations: chromatic and monochromatic. Since
we are using only light of one laser, we can neglect the chromatic aberrations. The most
relevant kinds of monochromatic aberrations are listed below:

• Spherical aberrations: These occur if lenses with spherical surfaces are present.
Perfect shaped lenses have a non-spherical surface but are more difficult to produce.
The small deviation to the perfect surface leads to aberrations where rays are not
focused in one point. If rays are further from the optical axis, they will intersect the
optical axis closer to the lens.

• Comatic aberrations: This is a kind of aberration that leads to changes in the mag-
nification with respect to changing points in the image plane. Off-axis point sources
appear to have a tail. It results from imperfections in the lens or imaging system.

• Tilt: A tilt occurs when the actual wavefront is tilted with respect to the optical
elements or image plane. It results in an incorrect magnification throughout the
image.

• Distortion: This effect leads to geometrical objects such as straight lines not appearing
straight in the image plane but with a curvature. This results from a changing
magnification or demagnification with increasing distance from the optical axis.

• Defocus: When the image plane is not in the focus of the imaging system, the image
is not sharp but appears blurry.

Fig. 8 shows the traces of the rays if certain kinds of aberrations are present. Some of
these aberrations can be prevented through a better alignment of the optical system whereas
others can only be accounted for by either producing prefectly shaped lenses or using a
combination of lenses where the aberrations cancel out.
The response of an optical system to a point source is called point-spread function (PSF) and
determines the resolution of the system. If the aberrations are cancelled out and a diffraction-
limited system is used, the first minimum of the PSF corresponds to the Rayleigh resolution.
The image will be formed as a convolution of the amplitudes of the PSF and the actual
pattern:

Iimg ∝ (APSF ∗ Apat)
2. (36)
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Figure 8: Different types of aberrations. The dashed line indicates the image plane. The figure is
adapted from [43].

3.5 Digital Micromirror Device
The digital micromirror device is a tool for spatial light modulation [42]. A picture of it is
shown in Fig. 9. The active chip is made of a pixelated screen with squared micromirrors.
When the device is in use, each mirror can be addressed individually to be pointing to either
the ‘On’ direction or the ‘Off’ direction, see Fig. 10 and Fig. 11. This is enabled by tilting
the mirrors around the diagonal axis of the mirror by a tilt angle of ±12◦ with respect to
the surface normal. When the device is switched off, the mirrors are placed in the ‘reset’
position which is parallel to the surface normal. The device is controlled with a Matlab
program via the computer.

Figure 9: DMD model V 6501. We built a protection case for the electronics board and mounted
the DMD on a home-built mount.
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Figure 10: Active area of DMD. There are MxN micromirrors in the active array. Each one can be
tilted along its diagonal axis to be pointing into the ‘On’ or ‘Off’ direction. The graphic is adapted
from [42].

With this arrangement, the DMD acts like a grating where arbitrary patterns determine the
structure of the grating. As a consequence of the grating-like structure, there are several
orders of diffracted light, with a wavelength-dependent diffraction angle. We collect the 0th

order for the Bragg spectroscopy, by which we mean the diffraction angle which is closest
to direct reflection and carries most of the reflected light intensity. Normally, the incident
light is directed at such an angle that the brightest diffraction order in the ‘On’ direction is
orthogonal to the surface of the DMD.
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Figure 11: The beam path and its reflection off a DMD. The beam reflected into the ‘Off’ direction
will be dumped. When the device is not in use, the mirrors are parked in a ’reset’ state. The graphic
is adapted from [42].

Figure 12: The projected pattern is displayed in the ‘On’ direction. A negative of the desired pattern
is projected into the ‘Off’ direction. The figure is taken from [25].

The desired pattern is displayedwith theDMDand is created in the ‘On’ direction. However,
the negative of the pattern is automatically projected in the ‘Off’ direction, see Fig. 12.
In the experiment we use two different DMD models, V6501 and V7001. Originally,
only the V6501 model was planned to be used but its delivery was delayed and we had
the chance to start the experimental work with the V7001 model instead and compare the
results obtained from both models. Both models use electronic hardware from Vialux that
incorporates the DMD chip from Texas Instruments. Tab. 3 in Sec. A.1 offers an overview
of the technical parameters of the two devices.
There are a few considerations which make one of the two devices more or less favourable
for certain uses. We will examine these parameters throughout the following chapters to
underlinewhywe chose theV6501model as the favourableDMD for theBragg spectroscopy
application.
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4 Image Projection
This section describes the image projection of patterns generated by a DMD onto the
atom plane. As mentioned in Sec. 3.3.2, the highest transferable momentum depends on
the smallest achievable wavelength of the sine pattern and is limited by the resolution of
our optical demagnification system. The experimental challenge is to design and build a
demagnification system that has a sufficiently high demagnification and resolution to display
the sine pattern.

4.1 Imaging System
As explained in Sec. 3.4, we rely on a high-resolution imaging system where we employ the
direct projection method and use the V 6501 DMD model. The idea of the imaging system
is to directly project a pattern displayed by the DMDonto the atom plane with an appropriate
demagnification factor using a laser. The transition used for the Bragg spectroscopy is the
583 nm line such that a yellow laser is used in the setup.
The highest theoretically achievable momentum transfer in our experiment is given by the
science cell geometry, which would allow a maximum incident angle of θ = 80◦. Using
Eq. 35 we find a corresponding resolution of 1.1 µm. This value sets a lower limit to the
resolution due to geometrical constraints but a more restrictive limit is given through the
imaging system as described in Sec. 3.3.1. We want to find the demagnification factor
required for our imaging system dependent on the minimum displayed wavelength.

4.1.1 Demagnification Factor

Using the estimate made in Sec. 3.3.2, we set a resolution target of rrayleigh = 1.5µm such
that λmin = 1.5µm in order to access a slightly higher momentum than anticipated. Please
note that when the lattice wavelength of the pattern becomes comparable to the resolution,
the amplitude of the oscillation is reduced to a few percent, which can be balanced with the
laser power.
Wewant to obtain an estimate for the minimum step size between adjacent sinusoidal frames
smin =

λmin
N . N needs to be big enough to generate a smooth transition between adjacent

patterns. However, N can not be too large because a higher refresh rate is necessary to
generate the same translation velocity which emphasises switching effects, see Sec. 6 for
more details. We choose N = 10 and obtain an expression for the minimal step size between
adjacent sinusoidal frames: s = 150 nm.
In order to find the demagnification factor that is required for our imaging system, we
translate the minimum step size in the atom plane into a minimum step size in the DMD
plane s′min = sminM , where M is the demagnification factor. The minimum step size in the
DMD plane should be significantly bigger than a micromirror pitch such that a few pixels
can be used to display a translation of a single step of the sinusoidal pattern in order to have
sufficient level of greyscaling. We choose a minimum of two pixels per step size and get
a required demagnification system with M = 100. The final image size in the atom plane,
when using the whole DMD screen will be 145.9 µm x 82 µm, which is significantly bigger
than the atomic cloud size.
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This estimate shows that the V6501 model is more suitable because it has a smaller mi-
cromirror pitch than the V7001 model, which allows a higher level of greyscaling for the
same demagnification system.

4.1.2 Objective

In order to achieve such a large demagnification factor a two stage arrangement is used,
where the total demagnification factor is the product of the two individual factors. For the
first stage a simple telescope consisting of two spherical lenses is used.
The second demagnification stage is more tricky to design because a larger demagnification
factor in combination with a strongly focusing second lens is required. Moreover, the light
has to pass a 2 mm thick glass cell before being projected onto the atoms. Building a second
telescope using only two spherical lenses would involve significant aberrations and worsen
the resolution of the system. Instead, the objective ‘lens’ consists of four lenses (see Fig.
13) which are chosen such that abberations cancel out. Additionally, the second telescope
will have an aperture in the focus point of the first lens to employ spatial filtering.

Figure 13: Imaging system consisting of two ‘telescopes’. The first telescope uses long-focal length
spherical singlet lenses, whereas the second telescope uses a custom objective as a replacement for
the second lens. The lenses are labelled with their Thorlabs part numbers and focal length. The
objective is displayed together with the final glass plate which is simulating the glass cell in the test
setup. The distances are given in mm. The graphic was created by my co-worker Alexander Norden.

The objective has to fulfill a few requirements, given by geometrical constraints, such as
maintaining a minimum distance from the glass cell and create a focal point exactly 1 cm
behind the glass cell such that the focal point lies in the atomic cloud. This is done by
finding a set of lenses, which in combination create the required focal length and resolution,
and optimising their relative position using a home-built ray tracing program in Matlab.
The objective is designed with inspiration from the custom-built objective presented in [4].
In the choice of the lenses we limit ourselves to easily obtainable commercial lenses with
spherical surfaces. The resulting objective promises to create a resolution of 2.1 µm in the
atom plane for a perfectly aligned setup. A total demagnification factor of 83 is reached. It
was not possible to design an objective with a resolution of 1.5 µm, which would require
more advanced lenses such as aspherical or achromatic lenses. However, the theoretical
resolution of 2.1 µm and demagnification of 83 will be sufficient for a first design of an
imaging system.
In order to test the imaging setup, we 3D printed a lens case and spacers with a precision
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Figure 14: 3D printed objective case on a mount. There are additional holders at the left end of the
objective that prevent the lenses from moving position and falling out of the objective. At the right
end of the objective, a camera is installed right in the focal plane.

of 0.1 mm. The length of the spacers is calculated to fix the lenses at exactly specified
distances. For simplification reasons, the glass plate (which simulates the science cell wall)
is included in the objective for resolution tests. The ray tracing program also indicates
which relative distances are the most sensitive in the whole setup. Whilst the setup is quite
robust for lens movements in the mm range, a change of distances around 1 mm in the
objective itself would worsen the resolution significantly. Fig. 14 shows the objective on a
mount.

4.1.3 Imaging Setup

Figure 15: Test setup including laser beam path. The laser (shown in yellow) exits on the top left
corner from an optical fibre and is directed to the DMD and through the second telescope. The
displayed pattern is then captured with a camera that is placed in the atom plane.
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The setup was built according to the plan shown in Fig. 13. For testing purposes, we only
built the setup using the second telescope and neglected the first one. This is because the
high demagnification factor would have resulted in a very small image, which is hard to
display without an additional magnification stage. The additional magnification stage would
again introduce aberrations and worsen the resolution. A DCC1545M Thorlabs camera is
placed in the focal point of the objective (atom plane) to image the displayed pattern. Fig.
15 shows the whole setup with the final beam path.

4.2 Resolution Measurements
In this section we measure the resolution of our optical setup and compare it to the ray
tracing predictions. As mentioned in Sec. 3.4, a final image is produced through the
convolution of the point-spread function with the object itself [3]. The resolution tests are
happening in one dimension where we test the sharpness of lines with known linewidths.
These can be regarded as a set of rectangular functions in one dimension.
In 1D, the Airy disk forming the PSF can be approximated as a sinc function where the
resolution corresponds to the width of the sinc function [1].
Sincewe aremeasuring our resolution using a camerawith a finite pixel size, this will worsen
the quality of the image and has to be taken into account in the analysis by convolving the
image with a rectangular pixel function. The final image is then given by:

Iimg = (APSF ∗ Apat)
2 ∗ Ipix

=
(
rect(

x
boxwidth

) ∗ sinc(
πx
r
)
)2
∗ rect(

x
pixwidth

) (1D)
(37)

4.2.1 Test Slide Measurement

The imaging system described in Sec. 4.1 has to be tested for its final resolution. This is
done by producing an object and observing the corresponding image created by the imaging
system with a camera. A laser beam is used to propagate the image through the imaging
system.
Firstly, the resolution of the objective itself should be tested. A difficulty in testing the

Figure 16: First setup for testing the objective’s resolution. A test target is placed in the back-focal
plane of the objective. The image is then focused onto a camera using a f = 400 mm lens. This
setup has a magnification factor of 9. The graphic was created by my co-worker Alexander Norden.
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resolution of the objective being part of a telescope as displayed in Fig. 13 is the finite pixel
size of the DCC1545M Thorlabs camera (pixel width= 5.2 µm). If the resolution is tested
this way, we need to be able to resolve features at the scale of 2.1 µm with the camera.
The pixel size is clearly too big for this purpose, so we used a different approach to test the
resolution.
The objective is flipped and used in combination with a f = 400 mm lens such that the
resulting telescope acts as a magnifying system. We use a resolution test target from
Thorlabs (NBS 1952), which consists of multiple sets of three lines each with known line
widths. The lines on the test slide are shown as intensity dips because the transmission of
the lines is zero. The test target is placed in the back focal plane of the objective. The
400 mm lens focuses the image onto the camera with an effective magnification factor of
around 9 as shown in Fig. 16. This means, features in the order of the resolution are
magnified to at least 18 µm in the image plane which corresponds to three camera pixels.
We use six sets of lines on the test slide with line widths ranging from 6.3 µm to 31.3 µm.
The resolution can be determined by measuring the ’sharpness’ of the edges of the lines and
is obtained by fitting the cross section through the lines with Eq. 37. The fitting parameters
are the width of the sinc function and the boxwidth of the rectangular function. We keep
the pixel width constant. The result for the boxwidth gives us the magnification factor
M = Boxwidth

Linewidth . We determine the resolution of the imaging system by dividing the sinc
width through the magnification factor.

Figure 17: The figure shows a section of the camera measurement using the set of three lines with
a linewidth of 25 µm. The camera is tilted by 4◦ relative to the test target.

Even though we flipped the telescope and only need to resolve features in the order of
three camera pixels, we use a trick to improve our sampling even more. The camera is
mounted on a rotation mount and is tilted by a certain angle before taking the pictures. An
example camera shot is shown in Fig. 17. By adding multiple cross section rows together
with a shifted origin we have more data points per camera pixel. The rows are shifted by
the tangens of the tilting angle. The angle is chosen to be around 4◦ which increases the
sampling rate by a factor of 10. In total, twenty rows are added together. Finally, we can
account for background noise and dust particles by taking a background picture where the
test slide is removed from the setup and dividing the original image by the background
image.
The results of the measurements are summarised in Tab. 1. The data is fitted to a curve
according to Eq. 37, where the error is given by the statistical uncertainty of the fit. Two
example fits to the cross sections are shown in Fig. 18.
The resolution varies frommeasurement to measurement between 1.94 µm to 2.45 µmwith
a weighted average and standard deviation of r = 2.18 ± 0.19 µm. This variation might
occur because the lines are positioned on different areas on the test target. The objective
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Linewidth (µm) Magnification Resolution (µm) Boxwidth (camera pixels)
31.3 10.3 2.36 ± 0.01 62.2
25 9.0 2.45 ± 0.02 43.4

17.9 9.0 2.19 ± 0.03 30.9
12.5 9.1 2.37 ± 0.02 21.7
8.9 9.0 2.15 ± 0.08 15.4
6.3 9.0 1.94 ± 0.04 10.9

Table 1: Fitting results of the objective’s resolution measurement for six different sets of lines.

Figure 18: Cross sections through the test slide lines. For both measurements, twenty rows are
added together. The fitting function is shown as a red curve. The linewidths of the curve are 31.3
µm for the left graph and 6.3 µm for the right graph. The resulting resolutions are given by 2.36 µm
for the left graph and 1.94 µm for the right graph. Please note, that the lines are indicated by dips in
the intensity because the test slide is not transmitting light at the line’s position.

only guarantees the resolution of 2.1 µm for objects which are within 20 µm radius to the
optical axis. Off-axis effects reduce the resolution. However, the lowest value of 1.94 µm
and the weighted average of 2.18 µm confirm that the resolution of the objective is very
close to the ray tracing predictions. The graphs and corresponding fits of the other lines are
found in Sec. A.4.1.

4.2.2 DMD Resolution Measurement

In addition to measuring the objective’s resolution as described in the last section, we want
to measure the resolution of the imaging system itself. This is done by using the DMD in
combination with the camera and the second telescope, consisting of a 750 mm lens and
the objective, as shown in Fig. 19. We do not add the first telescope in this measurement
yet, because the resulting image will be too small to be observed in the atom plane with a
camera. Moreover, the first telescope is not limiting the system’s resolution and therefore
is not a critical part in the measurement. The DMD model V6501 is used for the resolution
measurements.
As mentioned in the last section, we now have to measure the resolution with our camera
setup directly and cannot make use of a magnification telescope as previously done. This

29



4. IMAGE PROJECTION

Figure 19: Test setup for the resolution measurement of the imaging system. The DMD produces
a pattern that is imaged onto the camera with the 750 mm lens and the objective. The total
demagnification factor of the setup is 15. The graphic was created by my co-worker Alexander
Norden.

problem can be partly overcome by mounting the camera on a x-y translation stage. We
use a rotation mount in combination with the translation stage to enable a movement of the
camera in the micrometer range. The setup of the translation stage is shown in Fig. 20.
By moving the camera in small steps, we can take a lot of pictures and overlap them with
a shifted x-axis position. This method is similar to what we have done for the previous
measurement. Here, we overlap a series of twenty pictures per measurement. The shift
of the x-axis accounts for the movement of the camera. Since the camera moves by steps
which are only a fraction of the pixelsize, each pixel will measure a different intensity after
a movement of a single step and thus enables us to recreate the actual image with a sub
pixel-size resolution.
The pattern used to determine the resolution of the system is a series of six lines made of
50 DMD pixels each. This translates to line widths in the atom plane of 25.3 µm. A single
shot of the pattern is shown in Fig. 21. The figure also indicates the regions on the image
that are used for fitting in order to obtain the resolution dependent on the position of the
camera.
The resulting data is fitted to Eq. 37. Here, the boxwidth and the pixelwidth are fixed and

Figure 20: Translation stage setup for moving the camera in the x-y plane. The translation stage
moves the camera a certain amount per turn. By connecting the translation stage with the rotation
mount, we can accurately move the camera in micrometer steps. Please note that the movement is
only possible in the x-direction with this setup.
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Figure 21: The left part of the figure shows a single shot of the line pattern created by the DMD. A
set of 6 lines are used. The pattern will move across the x-direction of the camera such that more
pictures are overlapped to find the actual system resolution. The red areas indicate 9 different regions
on the image that we use to fit the data and find the imaging resolution. A combination of two lines
is used for each fit. The data of the center region and the resulting fit is shown on the right.

the resolution results from the width of the sinc function. We combine a set of two lines
for each fit such that we have nine different regions that are used for the fitting, see Fig. 21.
An example fit of the center region of the image is shown in Fig. 21. The remaining fits are
shown in Sec. A.4.2.

Region Resolution (µm)
ML 2.58 ± 0.02
MM 2.59 ± 0.02
MR 2.32 ± 0.02
UL 2.34 ± 0.02
UM 2.61 ± 0.02
UR 2.54 ± 0.04
BL 2.57 ± 0.02
BM 2.49 ± 0.07
BR 2.69 ± 0.08

Table 2: Fitting results of the imaging system’s resolution measurement. The abbreviations indicate
the position on the camera, where for example upper left is indicated by ‘UL’.

Tab. 2 summarises the results of the analysis, where the error is given by the statistical
uncertainty of the fit. The results suggest that the resolution is quite homogenous along
the image area, which is given by 300 µm x 300 µm. The weighted average and standard
deviation is given by r = 2.55 ± 0.12 µm. This resolution is not as low as the 2.18 µm
we obtained in the objective’s resolution measurement but gives an upper limit to what
the actual resolution of the imaging system is. Although we are using the moving camera
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method, it might still be difficult to obtain reliable measurements of resolutions which are
as small as 2 µm due to uncertainties in the camera movement. However, some of the
measurements show a lower resolution value, which is promising for the future experiment.
By doing a more careful alignment and choosing a proper magnification system that is used
for magnifiying the image formed in the atom plane, we might get a better idea of the lower
limit to our resolution of the whole imaging system.

To summarise, we tested the resolution of the objective and the imaging system with
two different tests. The measurement of the objective’s resolution delivers a lower bound
for the total imaging system’s resolution of 2.18±0.19 µm. We found an upper bound
for the resolution of the imaging system of 2.55 ± 0.12 µm. A next step would be to
measure sine patterns directly with the target minimum wavelength. For this purpose, a
good magnification system has to be designed and built so that the camera sees a magnified
image of the atom plane image. The challenge is to achieve a small enough resolution for
the magnification system such that our measurement is not falsified by the magnification
system.
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5 Pattern Formation and Correction
By using a DMD to create arbitrary light potentials we are limited to a binary image.
Greyscaling will help us in creating non-binary patterns in the image plane. Moreover, the
projected pattern has to be homogenous over the size of the atomic cloud and resemble
the sinusoidal intensity profile accurately. A pattern correction algorithm accounts for
aberrations and the Gaussian beam profile of the laser beam projecting the sine pattern.

5.1 Greyscaling and Image Binarisation
Due to its binary nature, the DMD does not intrinsically have greyscale ability. It can
only display binary patterns. Greyscaling can be achieved through temporal or spatial
averaging. For the purpose of cold atom experiments, spatial averaging is the favourable
method because temporal averaging might induce additional effects with the atoms.
For effective spatial averaging, a minimum number of pixels are required to form a point
in the image plane. Using our target resolution as the minimum point size we can estimate
the number of pixels used for projection onto that same point. There are approximately
20x20 pixels that are projected onto a point of the resolution size in the image plane. This
is sufficient for efficient greyscaling.
The binarisation of images with a pixel depth bigger than one can be done by using a
dithering algorithm. The most famous one is the Floyd-Steinberg error diffusion algorithm
[15]. It is developed in such a way that an image which is completely grey (50 % for all
pixels) will be transformed to a black and white checkerboard. There are a few principles
which describe how the algorithm works:

• The binarisation happens pixelwise. It starts with the top left pixel and works its way
from left to right and top to the bottom of the image.

• The pixel to be binarised is rounded to be black or white (0 or 1). Then the error from
the target value is calculated and passed on to the pixels on the right and the bottom
of the pixel under examination. The error is weighted with a factor before passing it
on to the next pixels, see Fig. 22, where the factors are calculated to produce a black
and white checkerboard for a completely grey input image.

The binarised image is calculated with the algorithm given in Sec. A.2. Fig. 22 shows
the binarisation process for pixel (i,j). Pixels on the left and top of the current pixel have
already been binarised. The current pixel is rounded to 0 or 1 and the rounding error is
passed on and added to four adjacent pixels, on the right, bottom right, bottom and bottom
left of the current pixel.

5.2 Pattern Correction
There are additional factors that worsen the quality of an image. These arise from diffraction
and aberration effects, the inhomogeneous laser intensity throughout its cross section and
misalignment effects. It is possible to compensate for these effects with an iterative pattern
correction algorithm, which we developed. For example, an inhomogeneous laser intensity
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Figure 22: The Floyd-Steinberg binarisation process for pixel (i, j).

can be compensated by turning off more mirrors in the center of the DMD screen in order
to match the overall intensity level to that of the side regions.
The pattern correction happens in an iterative sequence, which is displayed in Sec. A.3.
The target pattern is called Itarg. It is binarised to give Ibin and sent to the device. A camera
is placed in the atom plane and measures the resulting image Imeas. The measured picture
has to be resized to match the DMD image size.
It is then compared to an intensity-corrected target picture Icorr to find an error function.
The target picture needs to be intensity corrected because it is not possible to raise the
intensity level on the side region but only to lower the intensity level of the central region.
The maximum intensity is varied for different measurements whereas an additional offset
of 10 bytes is added to Icorr during each iteration to account for background noise.
The error is calculated using a hyperbolic tangent function to treat large errors more
gradually. The measured image is level-corrected to the level of the intensity-corrected
target image. An additional factor of 5 in the hyperbolic tangent adds an extra stretch factor
for the error and was experimentally optimised to avoid large errors preponderating.
Finally, the new picture is calculated by adding the error value to the original target picture
Itarg and binarising it. The calculated picture is then sent to the DMD to snapshot a new
measured picture and repeat the iteration step. The following equations describe the first
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step of the iteration process:

Ierr = 255 · tanh
[

5
255

(
Imeas

sum(Icorr)

sum(Imeas)
− Icorr

)]
Inew = Itarg − m · Ierr

Ibin = Floyd_Steinberg(Inew)

(38)

5.3 Pattern Correction and Greyscaling Measurements
The pattern correction algorithm was tested using the setup as described in Sec. 4.1. For
the imaging setup, only the second telescope was in use to avoid the magnification factor
being too high to image the displayed pattern. A set of sine patterns with six different
wavelengths was used. The wavelengths range from 150 DMD pixels to 30 DMD pixels,
which translates to wavelengths in the atom plane of 76 µm to 15.2 µm. Moreover, the
pattern is optimised using three different target intensities Icorr. For these measurements,
an error weighting factor of m = 0.1 was used. An example of an optimisation procedure
is shown in Fig. 23.

Figure 23: Sinusoidal pattern with a wavelength of 150 DMD pixels before (left) and after (right)
application of the pattern correction algorithm. To reach this optimised pattern, eleven iteration
steps were used. In the left picture, a clearly inhomogenous maximum intensity over the image area
is visible, which partly saturates the camera. The target intensity was set to be 82% of the maximum
intensity.

In order to find an estimate on howwell the optimised pattern is portraying the target pattern,
a crosssection of the pattern (corresponding to one column) is fitted to the following function:

f (x) = sin
(π
λ
(x − xoffset)

)2
· (ymax − yoffset) + yoffset. (39)

Fig. 24 shows the fitting results for two differentwavelengths. The iterationswere performed
for a set of six different wavelengths and three different target intensity levels. The shorter
wavelengths show a higher deviation from the sinusoidal pattern.
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Figure 24: Cross sections of two sinusoidal patterns before and after optimisation with the cor-
responding fit to the optimised pattern. The target intensity was set to be 82 % of the maximum
intensity. The starting pattern is indicated with blue dots, the optimised pattern is shown with orange
dots and the fit is displayed by a green dashed line. The left figure uses a wavelength of 150 DMD
pixels whereas the right figure uses a wavelength of 40 DMD pixels. As is clearly visible, the
constant offset is a lot higher for the smaller wavelength and also the target intensity value (210) is
not reached.

5.3.1 Mean Squared Error Progression

We start by analysing how well the pattern manages to resemble that of a sinusoidal curve.
For this purpose, we fit the dataset of each iteration step to the function displayed in Eq. 39
and calculate the mean squared error. Fig. 25 shows the development of the mean squared
error for all six wavelengths and all three target intensity levels.
Fig. 25 shows that the mean squared error is decreasing with increasing iteration number.
This means that the pattern correction is improving the image quality and leads to more
homogeneous sinusoidal patterns. It is independent on which target intensity is used during
the iteration process. However, for the small wavelengths the lower target intensity value
produces smaller errors. Another feature is that the overall error and the smallest error
reached in the iteration process is a lot lower for higher wavelengths (errmin = 3.7 bytes2

for λ = 150 pixels against errmin = 601 bytes2 for λ = 30 pixels).

5.3.2 Final Intensity vs. Target Intensity

Moreover, we analyse how the final intensity maximum and offset evolve with the wave-
length and if they depend on what is set as a target intensity.
For each iterative measurement, the cross section of the optimised picture is fitted to the
function given by Eq. 39 and the intensity maximum and offset are extracted. As mentioned
in Sec. 5.2, the target pattern uses a varying maximum intensity target value and a constant
offset of 10 bytes. Fig. 26 shows what actual intensity value is reached dependent on the
wavelength and the maximum target intensity.
Fig. 26 shows the maximum and offset intensity reached after optimisation. Both values
decrease for increasing wavelength and get closer to the target value. The offset is inde-
pendent on the maximum target intensity whereas the maximum intensity depends on the

36



5. PATTERN FORMATION AND CORRECTION

(a) λ= 30 pixels (b) λ= 40 pixels

(c) λ= 60 pixels (d) λ= 80 pixels

(e) λ= 100 pixels (f) λ= 150 pixels

Figure 25: Logarithmic display of the mean squared error progression during the iteration process
for all displayed wavelengths. It is clearly visible that the error is decreasing with advanced iteration
independent on what target intensity is used for the optimisation of the longer wavelengths. However,
for the wavelengths of λ = 30 or 40 pixels, the lower target intensities seem to result in a smaller
mean squared error. The measurements for the set with λ = 150 and a target intensity of 180 bytes
diverges from the remaining measurements. After 10-12 iterations, the error does not change a lot
and stays at a constant low level.
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Figure 26: Maximum intensity (left) and offset intensity (right) as a function of the pattern wave-
length. The offset is decreasing with increasing wavelength but is independent of the maximum
target intensity. The maximum intensity is also decreasing with increasing wavelength but is depen-
dent on the maximum target intensity. The higher the maximum target intensity, the higher is the
actual reached value.

target. If the target intensity is higher, the final maximum intensity is also higher. This
result is expected because the iteration error will be bigger if the target is set to a lower
value so more mirrors will be turned off more quickly to reach the set target. Note that none
of the iterations actually managed to reach the desired target value.
There are advantages in using both the higher target intensity and the lower target intensity
values for the pattern optimisation. For a higher set target intensity, the overall final inten-
sity will be higher, which means that a higher contrast between maximum and minimum
is reached. However, when using small wavelengths the divergence to a perfect sinusoidal
shape is higher for a higher target intensity, so the pattern displayed is not as homogeneous
and accurate.
The results show that it is more difficult to optimise shorter wavelengths. This is visible in
the increased variation from the actual target intensities and mean squared error for smaller
wavelengths. Moreover, the measured images show that it is harder to reach a homogenous
sinusoidal pattern for small wavelengths. This is due to the fact that fewer pixels are used
to create a period and so fewer pixels can be turned off in the center of the peak to improve
the pattern.

5.3.3 Arbitrary Pattern Optimisation

We finally want to show that we can display any kind of grey patterns after binarisation and
pattern optimisation. In the last section, we already have proven that sinusoidal patterns can
be binarised and optimised with a satisfying result. In order to show the same for arbitrary
patterns, I used grey pictures of my advisors, as shown in Fig. 27, to be displayed with the
DMD. These pictures were binarised and optimised using the same algorithm and settings
as for the sinusoidal patterns. The result is shown in Fig. 27. The optimisation worked
for the pictures of both supervisors. The effect was mostly to create a more homogenous
intensity throughout the whole image area. However, a few of the sharp features are lost.
This might be due to a calibration problem. The region of interest on the camera needs to
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be detected manually, and if the region is not found accurately, the resized measured image
does not overlap perfectly with the target pattern. If the calibration is not sufficiently good,
sharp features are lost in the optimisation process. The sinusoidal patterns are less sensitive
to the calibration of the camera region of interest because the intensity varies only in the
horizontal direction whereas the vertical direction consists of lines of equal intensity.
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Figure 27: 8-bit grey pictures of my advisors Prof. Tilman Esslinger (top left) and Dr. Robert Smith
(top right) and measured images of Rob and Tilman before (middle) and after optimisation with 10
iterations (bottom). The optimised pictures show a more homogenous intensity level but lose a few
of the sharp features.
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6 Switching Dynamics
In order to perform Bragg spectroscopy with a high excitation energy we need to switch
between consecutive sinusoidal patterns quickly. The maximum available excitation energy
depends on the maximum achievable refresh rate of the DMD divided by the number of
frames per period. This shows that when a higher refresh rate is available, the same energy
state can be excited using a higher number of frames and thereby creating a smoother
transition. Next to the maximum refresh rate, the dynamics during a switch between frames
is affecting the intensity of the light projected onto the atom plane. This chapter investigates
the switching dynamics of the DMD to ensure a sufficiently fast and clean switching between
the different sine frames.

6.1 Test Setup
The DMD can be operated in two different modes, the normal mode and the uninterrupted
mode [42]. They affect the dynamics of the DMD during the switching period between
consecutive frames.
The normal mode resets the mirrors to the ‘off’ state inbetween switches. The uninterrupted
mode switches between the modes automatically without resetting to the parking state.
During the switching, there is an inherent dark time where no light is reflected off the
device. This might affect the Bragg excitation of the atoms if it is in the order of a few µs.
Depending on the minimum dark time in the normal mode, one of the two modes might be
more favourable for our purposes.
Additionally to the dark time, the mirrors oscillate around their default position after being
switched back to the ‘On’ state. These lead to intensity fluctuations of the total intensity
reflected into the ‘On’ state.
In order to investigate this behaviour, the light reflected off the DMD is focused onto a fast
photodiode, depicted in Fig. 28. Two lenses are used because we want to capture as many

Figure 28: Setup for testing the switching dynamics of the DMD. The two lenses are necessary
for efficient capturing of multiple reflected orders and focusing them onto the active area of the
photodiode. Moreover, the aperture is closed to filter out higher diffraction orders for certain
measurements. The graphic was created by my co-worker Alexander Norden.

41



6. SWITCHING DYNAMICS

Figure 29: Normal mode switching with the V7001 model (left) and the V6501 model (right). At
the beginning of a switch, the intensity drops to 0 with an exponential decay. After the minimum
dark time, it rises to the normal mode intensity level with an exponential rise. The measurement on
the left uses a repetition rate of 9 kHz whereas the measurement on the right uses a repition rate of
5 kHz. The decay and rise time as well as the minimum dark time were obtained with a fit to the
data (orange curve). The V7001 model shows an oscillating behaviour during the intensity rise.

diffraction orders as possible. The different orders diverge a lot so we have to be as close
to the DMD as the beam path allows us. The combination of two lenses provided the best
focusing result. An additional aperture can be used to select only certain orders. The total
intensity is monitored with a photodiode.
As mentioned in Sec. 3.5, we use two different DMD models in these measurements and
compare the results of their switching dynamics.

6.2 Switching Dynamics Measurements
The switching dynamics of both models were tested. For this purpose, the light diffracted
into the 0th order as well as into higher orders was focused onto a photodiode. Two different
operation modes were used, the normal and the uninterrupted mode.

6.2.1 Normal Mode

Thesemeasurementswere done using only the 0th order. Tomeasure the switching dynamics
in the normal mode, a combination of checked chess patterns and patterns with all pixels
turned on were used.
In the normal mode, the screen resets to the ‘off’ direction between the pattern changes.
There is a minimum time where the DMD is set to the ‘off’ direction before the new pattern
is loaded. This is called the minimum dark time. The dark times were measured to be
tdark = 49 µs for the V7001 model and tdark = 90 µs for the V6501 model, see Fig. 29.
These values were obtained with a curve fit to the data and agree with the maximum frame
rate of the two models (∼ 22 kHz for V7001, ∼ 10 kHz for V6501).
The recorded intensity shows an interesting behaviour. As soon as the mirrors are turned
to the ‘off’ state during a frame change, the intensity drops to zero in a quick exponential
decay (τ = 0.6 µs for V7001 model and τ = 0.95 µs for the V6501 model). When turning
on the new pattern, the intensity rises exponentially to the level according to the number of
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Figure 30: Switching in the normal mode of the V6501 model with a repetition rate of 5 kHz. For
the measurement, a chess pattern in combination with ‘all-on’ pattern is used (higher intensity level).
After a switch, the intensity rises to a higher level and decays to a lower constant intensity level.

pixels turned on in the corresponding pattern. The rise time were determined with a fit to
be τ = 1 µs for V7001 model and τ = 1.2 µs for the V6501 model, see Fig. 29.
During the rise, the intensity overshoots to a higher lever and decays in a damped oscillation
to a lower level. The overshoot is more prominent the more pixels are turned on to form
that pattern (see ‘all-on’ pattern of V6501 measurement in comparison to half of the pixels
turned on in chess pattern, Fig. 30). The damped oscillations are only observable for the
V7001 model.
Due to the high dark time between consecutive frames, this mode is not suitable for
performing Bragg spectroscopy.

6.2.2 Uninterrupted Mode

In the uninterrupted mode, the situation is more complicated. We choose a series of differ-
ent patterns to investigate the situation in more detail, see Fig. 31.

V7001 Uninterrupted Mode Measurements
The first measurements were done with the V7001 model, where we only looked at the 0th

diffraction order:
We observed that between frame changes the intensity drops to zero. Moreover, when the
pattern is changing during a frame change (for example switch from pattern ‘a’ to ‘b’), there
is a decay in intensity happening, see Fig. 32. This decay is not happening if the following
pattern is the same as the currently displayed pattern.
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Figure 31: Variety of patterns used for testing the switching dynamics. The left column shows the
normal checkerboard patterns, where the top one is an inverted version of the bottom one. We call
these patterns ‘a’ and ‘b’. The middle column shows uneven checkerboard patterns. The bottom
one is essentially pattern a with half the pixels from pattern ‘b’ also turned on. It is called ‘a+’. The
top one is pattern b with half the pixels of pattern ‘b’ turned off. It is called ‘b-’. The right column
shows all pixels turned on or all pixels turned off. They are called ‘all-on’ and ‘all-off’.

V6501 Uninterrupted Mode Measurements
We used the series of patterns displayed in Fig. 31 to understand in more depth what is
happening during frame switches. We investigate the dynamics of light diffracted only in
the 0th order and into all orders together.

Figure 32: Example measurement V7001 model. The sequence ‘abb’ was used in the uninterrupted
mode with a repetition rate of 10 kHz. A decay into a lower level is happening just before the frame
changes from ‘a’ to ‘b’ and from ‘b’ to ‘a’ whereas when the frame changes from ‘b’ to ‘b’ no decay
is visible.
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All Order Dynamics
From the results observed with light diffracted into all orders we can see that during a frame
change, first all pixels that have to be turned off are turned off and after that, new pixels
forming the new pattern are turned on. Pixels that do not change position do not cause a
change to the intensity diffracted into all orders (see Fig. 33).

Figure 33: Intensity of all orders (blue) and only the 0th order (orange) in uninterrupted mode of
V6501 DMD, where an y-offset of 20 is introduced to the blue curve to increase the visibility. The
sequence ‘b- b a+ all-on a’ with a repetition rate of 9 kHz is used.
During the frame changes from ‘a’ to ‘b-’, ‘b’ to ‘a+’ and ‘all-on’ to ‘a’ there are pixels that need to
be turned off. This is displayed by an intensity drop in the blue curve. In the first two cases, there
are new pixels turned on additionally, so there is a rise in intensity again after the drop. For the other
pattern changes, only pixels are turned on so no intensity drop is seen in the blue curve.
For the orange curve, the intensity drops to zero during every frame change. If during the upcoming
frame change pixels have to be turned off, the intensity of the current level will decay onto a lower
value. This is the case for the changes from patterns ‘a’ to ‘b-’, ‘b’ to ‘a+’ and ‘all-on’ to ‘a’.

Additionally to the pattern combination described in Fig. 33, we investigated all the differ-
ent combinations of patterns and could verify the following rule for light diffracted in any
of the orders.
Pattern changes that require certain pixels to turn off will turn off those pixels before turning
on new pixels.

0th Order Dynamics
The situation for light only diffracted into the 0th order is different. Firstly, we always
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observe a drop to zero intensity during a frame change. This implies that mirrors which are
not turned off will slightly change the angle and thus not reflect into the 0th order but higher
orders during the pattern change. Secondly, whenever pixels are turned off in the upcoming
pattern change, the intensity level will decay to a lower level before the change. This decay
is proportional to the number of pixels being turned off in the pattern change. This decay
is not seen when observing all the orders together so the light that is not diffracted into the
0th order will be diffracted into higher orders instead, see Fig. 33.
An explanation for this behaviour is that pixels which are about to be turned off in the
upcoming frame change are ‘prepared’ and their reflection angle is changed slightly such
that a percentage of the light reflected of those mirrors is now diffracted into higher orders
instead. ‘Preparation’ means, that the spring bringing the pixels into position is already
imposed with a force before the position change is happening. A group at the University
of Cambridge observed a similar behaviour with their DMD model V7001 [38]. In both
cases, the decay is more prominent when a lot of pixels are changed, but is less observable
if only a few numbers of pixels are changed, which confirms our assumption about the pixel
‘preparation’.
The flickering of the mirrors during a pattern change will most likely not affect the atoms
since the pattern change is happening in timescales well below 2 µs. The gradual decay to
a lower intensity level, however, is problematic because it results in a varying intensity of
light. For the case of a slowly translating sinusoidal pattern, it will not affect the experi-
ment a lot because only few pixels are changed per translation step. Moreover, one could
optimise the greyscaling algorithm tominimise the number of pixels that need to be changed.

Finally, we compare the behaviour of the two DMD models in the uninterrupted mode.
They behaved very similarly, although the V6501 model showed less oscillating behaviour
during the decay and the intensity level was less noisy. However, the maximum switching
rate is significantly larger for the V7001model. In this case, operation with a high switching
rates is not desirable because the oscillating behaviour in combination with the intensity
decay will affect the atoms more with more frequent pattern changes.
The V6501 model is more favourable, because the oscillating behaviour is not observed,
so it can be operated at its maximum switching rate and enable a higher number of frames
per translation period. Assuming a maximum excitation energy of ω = 2π · 512 Hz and
operation at the maximum switching rate would allow for a very high number of frames
per period of N = 20. This is higher than what is needed for a smooth transition so we can
assume to access higher excitation energies than used in the Innsbruck experiment [33].
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7 Conclusions and Outlook

7.1 Conclusions
The work undertaken over the course of this thesis has laid the foundation for performing
Bragg spectroscopy on a dipolar quantum gas of erbium atoms using a DMD. The DMD
is used to generate sinusoidal lattice potentials that are projected onto the atoms via an
imaging setup.
In particular, we prepared an imaging setup for the direct projection method with a theoret-
ical target resolution of 2.1 µm. The imaging setup consists of a two-stage demagnification
setup using two telescopes where in the second telescope the last lens is replaced with a
custom-built objective to account for aberrations. The resulting demagnification factor is
83 and allows a high number of DMD pixels to be projected on a small area to enable a
high level of greyscaling.
The resolution of the imaging setup was measured in two steps. First, the objective’s res-
olution was measured using a test slide of lines with known linewidths and a lower bound
for the resolution of 2.18 ± 0.19 µm was found. The second test determined the resolution
of the second telescope of the imaging system and delivered a result of 2.55 ± 0.12 µm.
The result is taken as an upper bound to what our actual imaging resolution is and could
possibly be improved by magnifiying the projected image to avoid measuring the resolution
in the atom plane directly. This would prevent being limited by the camera pixel size.
In addition to determining the boundaries of our imaging system, we confirmed that sinu-
soidal patterns with wavelengths as low as 15.2 µm can be projected onto the atom plane
and resemble the desired sinusoidal pattern accurately through employing a pattern correc-
tion algorithm. The Floyd-Steinberg algorithm was used to minimise the error in pattern
binarisation which is enabled by our high level of greyscaling. Additionaly, a pattern cor-
rection algorithm was developed that allows for the iterative improvement of the projected
patterns. A good set of iteration parameters for pattern correction were found. Moreover,
we identified longer wavelengths to be more handy in the correction process because more
pixels generate one period in the pattern which allows for finer tuning in the correction
process. In order to project and optimise sinusoidal patterns with smaller wavelengths, an
additional magnification system is required.
Lastly, we investigated the switching dynamics of two DMD models. Two different op-
erational modes were tested, namely the normal mode and the uninterrupted mode. The
normal mode is unsuitable for Bragg spectroscopy measurements due to its long dark time.
Switching in the uninterrupted mode resulted in dark times lower than 2 µs which is suffi-
ciently low for this purpose. Both models showed a special behaviour for pattern changes
that require many pixels to switch state, which was identified by observing the intensity
diffracted into the 0th order and higher orders. A decay of 0th order intensity is occuring
during the projection time before the pattern change happens, proportional to the number of
pixels switching position. The V7001 model showed additional oscillations during pattern
changes which proved the V6501 model to be more suitable for the Bragg spectroscopy
measurements. Bragg spectroscopy will not require many pixels to change simultaneously,
so the intensity decay will not be significant. The required maximum switching rate for
Bragg spectroscopy is complied by both models and allows for smooth pattern transitions.
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7.2 Outlook
The setup is completed and can in principle be used to perform Bragg spectroscopy. There
are a few further tests that would confirm the presented results.
First, we need to design and build a magnifying imaging system which would allow more
precise measurements of the resolution. This enables projecting and measuring sinusoidal
potentials with a wavelength equal to the resolution in the atom plane and provide a more
definite number for the resolution of the imaging setup. Such a magnification setup would
require either a second objective or more advanced lenses, so as not to introduce aberrations
or worsen the resolution and thereby falsify the results.
The next step would be to build an imaging setup for the holographic projection method.
The setup will consist of a magnifying telescope and the existing objective. It is useful to
compare the two projection methods and their corresponding maximum achievable resolu-
tion to estimate the maximum available momentum transfer for Bragg spectroscopy.
In the near future, the setup can be implemented with the real experiment to measure the
dispersion relation of a dipolar quantum gas in a uniform 2D potential. The setup in the
experiment involves a few steps including the implementation of the DMD regulation with
the sequence used to control the experiment. Then, for each momentum that should be
probed, the pattern correction algorithm has to be employed first before performing the
Bragg spectroscopy. Moreover, there are geometrical constraints that need to be considered
carefully because multiple laser systems need access to the science chamber. A solution
might be to combine those systems with the 583 nm laser of the Bragg spectroscopy setup
and project them onto the atoms together using the objective.
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A. APPENDIX

A Appendix

A.1 DMD Technical Data

Model V-7001 V6501
Micromirrors 1024 x 768 1920 x 1080
Micromirror Pitch 13.7 µm 7.6 µm
Active Area 14 mm x 10.5 mm 14.5 mm x 8.2 mm
max. Switching rate 22.7 kHz 10.3 kHz

Table 3: Overview of technical data of the two DMD devices.

A.2 Floyd-Steinberg Error Diffusion Algorithm
The Floyd-Steinberg error diffusion algorithm to binarise an image called Iorig is given by:

def f l o y d _ s t e i n b e r g ( o r i g_ img ) :
out_ img=np . copy ( o r ig_ img )
f o r i in range image_he i gh t :

f o r j in range image_wid th :
o l d p i x e l = o r ig_ img [ i , j ]
newp ixe l = round ( o l d p i x e l )
out_ img [ i , j ] = newp ixe l
e r r = o l d p i x e l − newp ixe l
o r i g_ img [ i , j +1] = o r ig_ img [ i , j +1] + e r r ∗ 7 / 16
o r ig_ img [ i +1 , j −1] = o r ig_ img [ i +1 , j −1] + e r r ∗ 3 / 16
o r ig_ img [ i +1 , j ] = o r ig_ img [ i +1 , j ] + e r r ∗ 5 / 16
o r ig_ img [ i +1 , j +1] = o r ig_ img [ i +1 , j +1] + e r r ∗ 1 / 16
re turn ( out_ img )

A.3 Pattern Correction Algorithm
The algorithm used for the pattern correction is given by:

I _ o l d = I _ t a r g ;
f o r i =1 : i t e r _num

I_meas = im r e s i z e ( I_meas , [1920 1 0 8 0 ] ) ;
i f i >1

I _ o l d =_I_new ;
I _ e r r =255∗ tanh ( 5 / 2 5 5∗ ( I_meas / sum ( sum ( I_meas ) )

∗sum ( sum ( I _ c o r r )) − I _ c o r r ) ) ;
I_new= I_o ld −m∗ I _ e r r ;
I _ b i n = F l o y dS t e i n b e r g ( I_new ) ;

Here, m is the error adding factor and iter_num is the number of iterations.
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A.4 Resolution Measurements
A.4.1 Test Target Measurements

Figure 34: Resolution measurements using the test target. The linewidths shown in the graphs are
31.3 µm, 25 µm, 17.9 µm, 12.5 µm, 8.9 µm and 6.3 µm from left top to right bottom.

52



A. APPENDIX

A.4.2 DMDMeasurements

Figure 35: Resolution measurements using the DMD. The fits of two DMD lines to Eq. 37 are
shown. The fits correspond to the upper left region to the bottom right region, as indicated by their
position in the figure.
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