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Abstract

Production and Characterisation

of Dipolar Bose–Einstein Condensates

Péter Juhász

Remarkable progress in the field of ultracold atoms has enabled the study of a great

variety of topics in many-body quantummechanics.The precise control of key parameters,

such as interactions, temperature, density, internal and external degrees of freedom, di-

mensionality and the trapping geometry makes them a powerful and flexible experimental

platform.

The ability to create degenerate samples of atoms which feature long-range and

anisotropic dipole–dipole interactions besides the more conventional short-range and iso-

tropic contact interactions drew considerable attention, enabling the creation of quantum

droplets and a supersolid phase. This thesis reports on experimental and theoretical

progress in investigating dipolar many-body quantum systems. We present an overview

of our experimental apparatus and the techniques used for obtaining a Bose–Einstein

condensate (BEC) of erbium. We then discuss our experimental sequence for producing a

quantum degenerate gas, creating a quasi-pure BEC with 2.2× 105 atoms. To optimise

the production of erbium BECs, we explore density- and temperature-dependent losses

in 166Er and identify six previously unreported resonant loss features. Finally, to enable

studies of density-dependent phenomena, we present a theoretical investigation of di-

polar condensates in box-like traps, where we explore stability and how one can use it

to replicate properties of an infinite, homogeneous system to study dipolar physics. We

found that traps with hard walls trigger roton-like density oscillations even if the bulk

of the system is far from the roton regime, so smoother potentials are better suited to

recreate homogeneous conditions. This sets the ground for future experiments, where

the atoms will be loaded into a box trap to enable studies of systems which are tightly

trapped in one direction but homogeneous in the other two.
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1
Introduction

TheRoyal Arms. Quarterly, first and fourth Gules three
lions passant gardant in pale Or armed and langued
Azure (England), second quarter Or a lion rampant
within a double tressure flory-counter-flory Gules (Scot-
land), third quarter Azure a harp Or stringed Argent
(Ireland).

Quantum theory, formulated in the early 20ᵗʰ century, set the foundations of our

current understanding of the microscopic world. As an early theoretical result,

Satyendra Nath Bose [2] and Albert Einstein [3] predicted almost 100 years ago that

if a gas made of identical bosons is cooled down sufficiently, a large number of atoms

will occupy the ground state of the quantum system, yielding a novel state of matter, a

Bose–Einstein condensate (BEC). Interestingly, even though the theory was formulated

for a non-interacting system, Bose–Einstein condensation is an inherently many-body

effect [4]. Following breakthrough research in laser cooling [5] and the development of

the magneto–optical trap (MOT) [6, 7], the first BEC was realised some 70 years later, in

1995 in quick succession at JILA using 87Rb [8] and at MIT using 23Na [9] (an early claim

at Rice University using 7Li was ultimately confirmed two years later [10]). Reaching

quantum degeneracy in a fermionic system followed in 1999 [11], soon after realising

a BEC with spin-polarised H in 1998 [12], the original candidate system for creating a
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BEC since the 1970s. These results were significant: the development of laser cooling and

trapping methods, and the realisation of a Bose–Einstein condensate were rewarded by

Nobel Prizes in 1997 [7, 13] and 2001 [14]. The creation of macroscopic quantum-correlated

systems opened the possibility of studying a large variety of phenomena in many-body

quantum physics, with applications ranging from atom interferometry [15] and precision

measurements [16] to atomtronics [17].

Remarkably, quantum theory succeeded in explaining experimental observations

already in its early days, such as black-body radiation [18] and the photoelectric ef-

fect [19]. However, to this day, the description of strongly-correlated quantum systems

remains difficult, even if they consist of only a relatively small number of particles, and

while various phenomena (e.g. superconductivity) have been studied extensively within

condensed matter systems, a comprehensive description is still lacking. To tackle this

problem, Richard Feynman proposed using a model system where particles can be ad-

ded one-by-one, allowing the study of the properties of a complex quantum system via

the well-understood model system, called the quantum simulator [20]. Essentially, this

requires tuning the Hamiltonian of the quantum simulator to match a desired model,

bringing it into a specific initial state and then looking at the subsequent evolution. This

requires the precise experimental control of quantum states, and various platforms were

identified for this purpose, including photons [21], trapped ions [22] and cold atoms in

dipole traps [23].

Ultracold atoms provide a particularly attractive option for realising a quantum

simulator and for studying many-body quantum physics more generally, given their high

degree of controllability, the various detection possibilities and the extreme physical

parameter regimes that can be explored [23]. The research that ensued after creating

the first BECs yielded many prominent achievements [24]. The early days of the field

saw the demonstration of the (matter-wave) interference of two BECs [25], confirming

the spatial coherence of the quantum state [26], the realisation of the crossover from

Bardeen–Cooper–Schrieffer-type (BCS) superfluidity to Bose–Einstein condensation [27–

29], the observation of quantised vortices [30–32], the lattice-ordering of vortices [33]

and other phenomena related to superfluidity [34, 35], and the observation of the Mott

insulator transition in optical lattices [36]. Later on, building on these results, attention

turned towards systems out of equilibrium [37], simulating condensed matter lattice

models [38], exploring the dynamics of phase transitions [39], precision metrology [40,

41] and quantum information [42].

This wealth of research directions is supported by a wide range of tools and techniques

that keep the field of ultracold atoms at the forefront of quantum simulation. Spatial con-

finement of atoms can be achieved with either magnetic fields [6] or non-resonant light
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fields via the AC Stark effect [43]. In both cases, the imposed field induces a potential well

(or, in the case of optical lattices, a periodic array of wells), which traps the atoms. Meth-

ods most commonly used in experiments, e.g. magnetic time-orbiting-potential (TOP)

traps [44] and optical dipole traps using focused Gaussian beams [43], result in approx-

imately harmonic trapping potentials. While this is sufficient for many applications,

offering a large degree of freedom in terms of the trap aspect ratio, anharmonicity and

tightness of the trap, it falls short of simulating models requiring a homogeneous density.

Therefore, optical box traps have been developed [45–47], enabled by manipulating light

intensity patterns. These open the door for numerous experiments that require uniform

systems, such as exploring the dynamics of turbulent flow [48] and the phase transition

to BEC [49]. Besides such bulk traps, optical lattices have also been exploited to realise

solid-state crystal-like structures [50, 51], offering full control over lattice parameters

such as the tunnelling rate. Combined with single-site-resolution imaging (a quantum gas
microscope [52]), this is a particularly powerful configuration for quantum simulation.

In addition to the ability of tuning the trap geometry, the creation of systems with

reduced dimensionality is also possible. By imposing sufficiently tight trapping along one

or two directions, forcing the system into the ground state along these axes, dimensions

can effectively be frozen out. This led to the observation of inherently one- [53, 54] and

two-dimensional effects [55].

The strength and nature of interparticle interactions can also be tuned. Due to the

diluteness of ultracold gases, interactions can be described by two-body collisions. Fur-

thermore, due to the low energies involved, interactions of most species can be described

by short-range contact interactions, whose strength and (attractive or repulsive) nature is

determined by a single parameter, the B-wave scattering length (0B ). Feshbach resonances

can be used to tune this parameter [56–58], with possibilities ranging from changing the

interactions from repulsive to attractive, to switching them off completely or making

them as strong as quantum mechanics allows (the so-called unitarity limit).

Recent progress expanded the spectrum of elements that can be cooled to quantum

degeneracy (see Fig. 1.1). The condensation of more exotic elements with high magnetic

moments (chromium (Cr) [59], dysprosium (Dy) [60], erbium (Er) [61], thulium (Tm) [62]

and europium (Eu) [63]) added a new aspect to experiments [64, 65] by introducing

long-range and anisotropic dipole–dipole interactions (DDI) on top of the simpler contact

interactions present in all atomic species, which are inherently short-range and isotropic.

First results obtained with chromium demonstrated how the anisotropic nature of the

dipolar interaction affects the stability [66] and the aspect ratio [67] of a trapped BEC,

and the density patterns emerging after the collapse of a cloud brought to instability [68].

Further developments came with the condensation of dysprosium and erbium, as their
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Figure 1.1. Bose–Einstein condensation of different atomic species. The periodic table of
elements with those successfully condensed into a BEC highlighted. The fields
also state the year when condensation was first reported. In our experiment
we use erbium, highlighted with a different colour.

higher magnetic moments and larger atomic masses make dipolar interactions even more

pronounced relative to the contact interactions. Furthermore, contact interactions can be

tuned more readily in these elements due to the large number of accessible Feshbach res-

onances [61, 69, 70]. This eventually allowed the detection of the so-called roton minimum

in the excitation spectrum of a strongly dipolar gas [71, 72], showing similarities with the

strongly-correlated system of liquid helium [73–75], with the additional ability to tune

the roton gap via tuning the contact interactions. The observation of quantum droplets,

emerging from a dipolar cloud collapsing due to strong anisotropic interactions [76, 77],

was also linked to the roton spectrum, eventually leading to the recent creation of the first

supersolids,¹ an exotic state of matter combining the spatial density modulation of solids

and the phase coherence of superfluids [80–82]. Besides these, the first observation of

vortices was reported recently [83], while the dynamics of phase transitions to a dipolar

BEC or a supersolid, as an extension of Kibble–Zurek theory [48, 49] to dipolar systems,

¹ Note that supersolids have been created earlier by coupling a BEC to optical cavities [78] and by
inducing a ‘stripe phase’ in a BEC using lasers [79]. Compared to these systems, dipolar supersolids
are special as the density modulation is induced by the internal interactions themselves, rather than
an external factor.



1.1. Thesis outline 5

remains to be explored.

Inspired by this success, there are now a number of experiments with ultracold dipolar

atoms (mostly Er and Dy) around the world, including the ones at Innsbruck [61], Stut-

tgart [77], Florence [84], Stanford [60], Harvard [85], MIT [86], Bonn [87], Paris [88] and

Hong Kong [89]. Furthermore, some groups are preparing experiments with atomic mix-

tures, adding another layer of possibilities, using dysprosium and potassium at Paris [90]

and Innsbruck [91], and erbium and dysprosium also at Innsbruck [92]. Besides the work

in laboratories, dipolar physics also inspired art: a stained glass church window depicting

the dipolar BEC collapse has been created in Lohmar, Germany [64].

In our group, we are condensing erbium. Furthermore, as both the BEC phase trans-

ition and the formation of a supersolid are sensitive to the atomic density, we are im-

plementing a trap providing a homogeneous atomic density to study these processes

in depth. Combining the uniform trapping of atoms with long-range and anisotropic

dipole–dipole interactions will yield a unique apparatus for exploring many-body physics,

and to achieve this goal, over the course of my DPhil I studied the stability of dipolar BECs

in box-like traps and their atom loss properties, to extend the lifetime of samples and to

achieve a large atom number in the trap. Furthermore, another atomic species, potassium,

is currently being added to the system, as the introduction of such impurities will enable

the investigation of Bose polaron physics [93] and qubit decoherence in non-Markovian

reservoirs [94, 95].

Finally, it is worth noting that other fields aimed at exploring quantum simulation with

dipolar systems, including ultracold heteronuclear molecules possessing a large electric

dipole moment [96–98], Rydberg atoms [99, 100] and trapped ions [22], are developing at

an equally fast pace, sharing many of the experimental techniques with ultracold atoms.

All of these systems, as well as ultracold atoms, can also be used to probe fundamental

physics [101]. The advantage of these alternative systems for researching many-body

dipolar physics is that they offer dipole moments up to two orders of magnitude larger

than that of ultracold atoms, but they are limited by the short lifetime of samples and

typically require more complex apparatus.

1.1 Thesis outline

In this thesis, I offer an overview of the work undertaken over the course of my DPhil,

in collaboration with my research supervisor and colleagues. This included designing

and building an experimental platform for investigating many-body quantum physics
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in dipolar systems, as well as the theoretical investigation and measurement of such

systems.

The thesis is structured as follows:

• Chapter 1 is an introduction to the field this thesis is set in and provides a brief

overview of the scientific results presented in the chapters that follow.

• Chapter 2 is a relatively thorough, but necessarily incomplete review of the key

properties of magnetic lanthanides in general and erbium in particular, the ele-

ment we use in our experiment for exploring many-body quantum physics. It also

presents an introduction into the main theoretical concepts one encounters while

running ultracold atom experiments, including atomic interactions and the arising

scattering properties, and a mean-field description of Bose–Einstein condensates

via the Gross–Pitaevskii equation. This chapter is based on Refs. 64, 65, 102 and 103.

• Chapter 3 describes the experimental apparatus used for producing an erbium

Bose–Einstein condensate, built together with Dr Anna Marchant, Lucas Hofer, Jiří

Kučera, Gavin Lamb and Dr Milan Krstajić, whose thesis [104] contains a thorough

description of the apparatus, still in the building phase at that time. This was

used as the basis for parts of the description presented in this thesis. Besides the

daily running of the experiment, I was particularly responsible for designing and

implementing the optical dipole trap, used for evaporation and transport, and for a

variety of smaller pieces of instrumentation.

• Chapter 4 discusses the attainment of an erbium BEC, including the experimental

sequence and the details of the optical dipole trap to produce it. Results presented

in this chapter rely on data taken together with Dr Milan Krstajić and Jiří Kučera.

• Chapter 5 describes the measurement of the three-body loss coefficient of erbium

and the investigation of its magnetic field and temperature dependence. Data were

taken together with Dr Milan Krstajić and Jiří Kučera, who also derived additional

contributions to the atom loss. Besides taking data and preparing a manuscript for

publication, I was also responsible for data analysis.

• Chapter 6 describes a theoretical study of the stability of dipolar BECs in box-like

traps, with the aim of creating a system resembling an infinite, homogeneous one.

The project was started by two undergraduate students, David Strachan and Edward

Gandar, and was developed more fully by me and Dr Milan Krstajić. A description

of some early results and the numerical techniques behind the simulation, still

in the data-taking phase at that time, form a small part of his thesis [104]. I was
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responsible for developing an independent numerical technique so that results can

be checked against each other, data analysis and the preparation of a manuscript

for publication.

• Chapter 7 presents the conclusions of this thesis and a brief outlook towards future

directions of research.

On a stylistic note, inline fractions of the form 0/12 will be presented in this thesis,

which should be read as 0/(12), as the brackets have been omitted for readability. Further-

more, 0∗ marks the complex conjugate of 0, while 0† is the Hermitian adjoint of operator

0. The ≡ symbol is used to note a definition, i.e. 0 ≡ 1 means that 1 is defined by 0. Finally,

the figures aim to be colourblind-friendly by using appropriate colour palettes (see e.g.

Ref. 105 about possible methods and the importance of this).

1.2 List of publications

Results presented in this thesis were published in the following articles:

• L. R. Hofer, M. Krstajić, P. Juhász, A. L. Marchant and R. P. Smith, ‘Atom cloud

detection and segmentation using a deep neural network’, Mach. Learn.: Sci. Technol.

2, 045008 (2021), presented in Chapter 3.

• M. Krstajić, P. Juhász, J. Kučera, L. R. Hofer, G. Lamb, A. L. Marchant and R. P. Smith,

‘Characterisation of three-body loss in 166Er and optimised production of large

Bose–Einstein condensates’, arXiv, 2307.01245 (2023), presented in Chapter 5.

• P. Juhász, M. Krstajić, D. Strachan, E. Gandar and R. P. Smith, ‘How to realize a

homogeneous dipolar Bose gas in the roton regime’, Phys. Rev. A 105, L061301
(2022), presented in Chapter 6.

https://doi.org/10.1088/2632-2153/abf5ee
https://doi.org/10.1088/2632-2153/abf5ee
https://doi.org/10.48550/arXiv.2307.01245
https://doi.org/10.1103/PhysRevA.105.L061301
https://doi.org/10.1103/PhysRevA.105.L061301




2
Ultracold erbium atoms

Hungary. Per pale, the first barry of eight Gules and
Argent, the second Gules, on a triple mount Vert a crown
Or, issuant therefrom a double cross Argent.

Our apparatus employs a highly magnetic rare-earth element, erbium, to explore

many-body quantum physics with long-range interactions. We review the key

properties of erbium in §2.1, with a particular emphasis on its electron structure

which is the source of its high magnetic moment and enables the laser cooling of

this element. In §2.2 we explore the interactions between erbium atoms, inducing

exotic scattering properties. Finally, in §2.3 we revisit the theory of Bose–Einstein

condensation and how dipole–dipole interactions affect it. This review of the theory

behind dipolar ultracold-atom experiments is carried out with the aid of Refs. 64,

65 and 102.

2.1 Why erbium?

In our apparatus, we use a highly magnetic element called erbium, which possesses

a considerable, permanent magnetic dipole moment. To study many-body quantum

physics involving long-range and anisotropic interactions, we produce a Bose–Einstein

condensate using this element. Besides erbium, chromium (Cr) and dysprosium (Dy) offer

the possibility of similar studies [64, 65]. Furthermore, electric dipoles can be induced

9
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in heteronuclear molecules [96–98] or Rydberg atoms [99, 100] in an electric field, and

long-range interactions beyond the 1/A 3 scaling can be achieved using optical cavity- or

waveguide-mediated interactions [108–110], or phonon-mediated interactions in trapped-

ion systems [22]. These systems often exhibit orders of magnitude larger dipole strengths

than what is achievable with magnetic dipoles, but other limitations arise in these systems,

e.g. short lifetimes, density limitations and rapid dissipation.

Erbium (chemical symbol Er) is a rare-earth metallic element in the lanthanide series

of elements in the periodic table, with atomic number / = 68 and average atomic mass

< = 167.26Da.¹ It is found principally in the minerals monazite and bastnäsite, and can be

isolated by ion exchange and solvent extraction. It was discovered in a sample of gadolinite

ore by Carl Gustaf Mosander in 1843 [111] and has a fascinating history [112]. Its name,

along with the elements terbium (Tb), ytterbium (Yb) and yttrium (Y), is derived from the

mine from where the ore originated: Ytterby, near Stockholm, Sweden. Interestingly, the

originally separated parts of gadolinite were in fact a mixture of several oxides and pure

erbium could only be isolated by Wilhelm Klemm and Heinrich Bommer as late as 1934.

Ytterby proved quite fertile for the discovery of new elements. Other elements which

were discovered using the ore mined there were named gadolinium (Gd, after gadolinite),

scandium (Sc, after Scandia, the Latin name for Scandinavia), holmium (Ho, after Holmia,
the Latin name for Stockholm), thulium (Tm, after Thule, an Ancient Greek word for

Scandinavia), dysprosium (Dy, after dysprositos, the Greek word meaning ‘hard to find’)

and lutetium (Lu, after Lutetia, the Latin name for Paris, where the ore was analysed).

Altogether, ca. half of the lanthanide elements were discovered in Ytterby.

Despite being a rare-earth element, erbium has a variety of uses. Er3+ has a prominent

transition at 2940 nm, which is highly absorbed by water and is thus well-suited for laser

surgery and other medical applications. It is also used as a dopant in optical fibres, and

erbium-doped fibre amplifiers are widely used in optical communications. Er2O3 has a

pink colour and is sometimes used as a colourant for glass and porcelain. When alloyed

with metals (e.g. vanadium), erbium lowers their hardness and improves their workability.

Furthermore, the erbium–nickel alloy Er3Ni has an unusually high specific heat capacity

at liquid-helium temperatures and is therefore used in cryocoolers.

Within ultracold atomic physics, the interest in erbium is due to its large magnetic

dipole moment, energy level structure favourable for laser cooling and the accessibility

of both bosonic and fermionic isotopes. These make it suitable for implementing standard

cooling and trapping techniques to reach low temperatures and quantum degeneracy, and

hence for exploring many-body quantum phenomena with dipole–dipole interactions.

¹ The Da (dalton) is the unified atomic mass unit, 1Da ≈ 1.66 × 10−27 kg.
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Isotope 162Er 164Er 166Er 167Er 168Er 170Er

Abundance 0.14% 1.60% 33.5% 22.9% 27.0% 14.9%

Statistics boson boson boson fermion boson boson

Table 2.1. Naturally occurring isotopes of erbium. Abundances and spin statistics of
stable isotopes of erbium. Data taken from Ref. 114.

2.1.1 Basic properties

By appearance, erbium is a soft, pale, silvery metallic substance which easily oxidises

and hence covers itself with a layer of oxide when exposed to air. Like many other

lanthanides, it has a high melting point at 1529 °C and a boiling point at 2868 °C [113].

It is slightly toxic if ingested, and in dust form presents a fire and explosion hazard. It

naturally occurs in six stable isotopes, five of them bosonic, as shown in Table 2.1. It has

a large magnetic dipole moment of 7`� , where `� is the Bohr magneton.² Although a

large magnetic moment is not common to all lanthanides, some of them have the highest

magnetic moment of all elements. Dysprosium and terbium have the largest magnetic

moments, 10`� , holmium has 9`� and europium has 7`� , the same as erbium. However, we

will see that it is not only the magnetic moment but also the atomic mass which influences

the strength of dipole–dipole interactions. Therefore, even though chromium (Cr) also has

a high magnetic moment of ca. 6`� , its significantly smaller atomic weight (< = 52.0Da)

yields a less pronounced dipolar interaction.

2.1.2 Electron configuration

The electron configuration of erbium can be written as

[Xe] 45 12 6B2 , (2.1)

which is an example of a so-called submerged-shell configuration, where the valence

electrons fill the 6B subshell while the 45 subshell remains partially filled. This config-

uration is responsible for the high magnetic moment of erbium, as the two holes in the

45 subshell greatly contribute to the total angular momentum of � = 6 in the ground

state, yielding a high magnetic moment.

This ground state electron configuration can be understood via the Madelung rule

and the aufbau principle, stating that a subshell with a lower = + ℓ will have a lower

² The Bohr magneton is defined as `� = 4ℏ/2<4 ≈ 9.274 × 10−24 J T−1, where 4 is the elementary
charge, ℏ is the reduced Planck constant and<4 is the electron mass.
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energy and so will fill first, where = is the principal quantum number and ℓ is the orbital

quantum number. Given the 45 subshell has = + ℓ = 7 and the 6B subshell has = + ℓ = 6,

the latter will fill first, leaving two gaps in the former.

We can proceed with finding the ground state using !( coupling of the 45 elec-

trons. According to Hund’s first rule, the ground state will have maximum multiplicity.³

Therefore, the two gaps will result in two unpaired electrons in the ground state with

a spin quantum number <B = 1/2, yielding a total spin quantum number ( = 1 and a

multiplicity 2( + 1 = 3. According to Hund’s second rule, the ground state will also have

the highest total orbital quantum number, so the unpaired electrons will have magnetic

quantum numbers<ℓ = +2 and +3, yielding a total orbital quantum number ! = 5. Finally,

as per Hund’s third rule, the ground state will maximise the total angular momentum

quantum number � as the subshell is more than half-filled, so ( and ! will couple to give

� = ( + ! = 6. Therefore, the term symbol of the ground state in standard spectroscopic

notation can be written as
3H6 . (2.2)

In general, the coupling of electrons in heavy elements is more complicated, as the

spin–orbit interaction becomes comparable to the Coulomb interaction for electrons

in higher orbitals. Therefore, the !( coupling scheme is no longer applicable and the

9 9 coupling scheme needs to be used. A special case of this is called �1�2 coupling, relevant

for most of the excited states of lanthanides [115]. In this scheme, !( coupling is assumed

to work separately for the 45 subshell and the outer valence electrons, yielding �1 and �2,

respectively. These then sum up to give the total angular momentum J = J1 + J2, with

corresponding quantum number � . The whole state is then denoted as (�1, �2)� . In the

ground state, the two 6B electrons are in the ! = 0, ( = 0 state, yielding �2 = 0, and the

45 electrons give an overall 3H6 state with ! = 5, ( = 1 and �1 = 6 as stated previously.

Therefore, the final coupled state is (6, 0)6.

Let us use the prominent 401 nm transition of erbium to demonstrate the electron

coupling of an excited state. This state results from the excitation of an electron from

the 6B orbital into the 6? orbital. Therefore, within this scheme, the 6B and 6? electrons

couple together to a 1P1 state by !( coupling, and the rest of the electrons couple to 3H6

as before. These two states then couple to give the (6, 1)7 state, and so this excited state

can be written in full as

[Xe] 45 12
(3H6

)
6B 6?

(1P1) (6, 1)7 . (2.3)

³ The multiplicity is defined as 2( + 1, where ( is the total spin angular momentum.
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It is interesting to note that nuclei with an even number of protons and neutrons

have no nuclear spin [115], so the bosonic isotopes of erbium likewise have no nuclear

spin and hence no hyperfine structure. Nuclei with odd–even or even–odd number of

protons–neutrons have a half-integer, and odd–odd nuclei an integer nuclear spin, and

in accordance with this the fermionic isotope of erbium has a nuclear spin quantum

number � = 7/2 and a total angular momentum quantum number � = 19/2.

2.1.3 Energy spectrum

The submerged-shell electron structure also gives rise to a rich spectrum of excited

states. Figure 2.1 shows the energy spectrum—a total of 312 states with odd parity and

358 states with even parity have been discovered so far.⁴ The ground state has even parity.

Understanding the excitation spectrum is important as laser cooling is most easily set

up on a two-level system with a prominent, electric-dipole-allowed transition. However,

due to the large number of energy levels in erbium, it is possible that an excited state

decays with a large probability into an intermediate, lower-lying state before eventually

decaying back to the ground state. Such intermediate states with long lifetimes compared

to the initially excited state are called metastable states, and can be problematic as they

deplete the electrons from the ground state and the target excited state, hence decreasing

the efficiency of laser cooling. While metastable states can also be actively depleted using

repump lasers (which pump the electrons from the metastable states to the target excited

state), they are ideally avoided for technological simplicity.

In the case of erbium, the selection rules of electric dipole transitions restrict possible

transitions from the ground state to an excited state with � = 5 or 7. To reduce the

number of possible decay channels into metastable states, the excited state should not

have too high an energy as the number of decay channels increases with energy, and so

the probability of decaying into an intermediate state (the so-called branching ratio) can

also potentially increase.

Various suitable transitions for laser cooling have been identified with wide (30MHz)

to ultra-narrow (2Hz) linewidths [118]. While a broad transition allows the efficient

operation of the Zeeman slower (ZS) due to the high scattering rate of photons, a narrow

transition is better suited for operating a magneto–optical trap (MOT) due to the lower

achievable temperature. In most erbium experiments, the transitions used for cooling

are the ones at 401 nm [119] and 583 nm [120], with linewidths of 29.7MHz and 190 kHz,

⁴ The parity relates to the symmetry of the wave function: the parity operator %̂ inverts the wave
function through the origin. If %̂Ψ(r) = Ψ(−r), the wave function is even, if %̂Ψ(r) = −Ψ(−r), it is
odd.
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Figure 2.1. Energy levels of erbium. Energy levels of erbium arranged by their total angu-
lar momentum quantum number � . Even and odd parity levels are indicated in
red and blue, respectively. The transitions used for laser cooling, at 401 nm and
583 nm, are highlighted. Spectroscopic data obtained from Refs. 116 and 117.
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Transition Blue Yellow

Wavelength (λ) 400.91 nm 582.84 nm

Lifetime (g) 5.4 ns 857 ns

Transition rate (Γ = 1/g) 1.85× 108 s−1 1.17× 106 s−1

Natural linewidth (Δa = Γ/2c ) 29.5MHz 186 kHz

Doppler temperature ()� = ℏΓ/2:�) 707 µK 4.46 µK

Recoil temperature ()A = ℏ2:2/2<:�) 0.36 µK 0.17 µK

Saturation intensity (�sat = cℎ2Γ/3λ3) 59.8mWcm−2 0.12mWcm−2

Table 2.2. Laser cooling atomic transitions. Various properties of the transitions used for
laser cooling. Here, :� is the Boltzmann constant, (ℏ) ℎ is the (reduced) Planck
constant, 2 is the speed of light and : = 2c/λ is the wavenumber. Data taken
from Ref. 123.

respectively. These transitions are highlighted in Fig. 2.1 and their properties are tabulated

in Table 2.2. The 401 nm (blue) transition⁵ is the most prominent transition in erbium,

where a 6B electron is excited into a 6? state and couples with the second 6B electron

to the singlet state 1P1. As the transition is quite wide, it has a large photon scattering

rate, which makes it convenient for the initial stages of laser cooling (the Zeeman slower

and transversal cooling) and imaging. The 583 nm (yellow) transition occurs when the 6B

and the excited 6? electron couple to the triplet state 3P1. As the transition is reasonably

narrow, it is well-suited for operating the magneto–optical trap, giving a low Doppler

temperature of 4.5 µK.

Due to a change in the charge distribution within the nuclei of different isotopes, the

transition energies change linearly with the atomic mass. Therefore, the frequency of

the laser addressing the transition needs to be changed accordingly. This is known as

the isotope shift, and between neighbouring bosonic isotopes it is ca. 820MHz for the

401 nm transition [124] and 980MHz for the 583 nm transition [125], corresponding to

an isotope shift of 410MHz and 490MHz per atomic mass unit, respectively.

In this thesis we concentrate on the bosonic isotopes, whose energy levels have no

hyperfine structure due to the lack of nuclear spin. However, a discussion on the hyperfine

structure of the energy levels of the fermionic isotope can be found in Ref. 126.

⁵ We will refer to the colour associated with the wavelength of this transition as ‘blue’, as is the case in
literature relating to erbium experiments, but we note that this wavelength is more often characterised
as violet [121, 122].
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2.1.4 Magnetic properties

Lanthanides are ferromagnetic, but given they have a Curie temperature below room

temperature, this cannot be seen under ordinary circumstances [127]. However, they

can form compounds with transition metals such as iron, nickel or cobalt, and create

some of the strongest permanent magnets at room temperature. These so-called rare-

earth magnets (e.g. neodymium magnets) can create permanent magnetic fields of up

to 1.4 T [128] due to the high magnetic anisotropy of their crystalline structures and the

high magnetic moment of the lanthanides within [129].

As mentioned in §2.1.1, some of the lanthanide elements have the highest magnetic

moments in the periodic table as their electron structure results in exceptionally large

quantum numbers. While most other elements have a much smaller magnetic moment,

chromium (Cr) has a magnetic moment of ca. 6`� and was in fact the first strongly dipolar

element to be cooled down to quantum degeneracy.

The component of the magnetic moment along the direction of the quantisation axis

is given by

` =< �6� `� , (2.4)

where< � is the total angular momentum projection quantum number, i.e. the projection

of the total angular momentum J along the quantisation axis (set by the direction of the

external magnetic field B), and 6� is called the Landé 6-factor. Within !( coupling, the

Landé 6-factor can be calculated as

6� = 1 + (6B − 1) � (� + 1) − !(! + 1) + ( (( + 1)
2� (� + 1) , (2.5)

where 6B = 2(1 + U/2c + · · · ) ≈ 2.002 319 3 [130] is the electron spin 6-factor and U is the

fine-structure constant.⁶ This formula does not include some known corrections [131],

such as deviations from perfect !( coupling, a relativistic correction to the kinetic energy

of high-orbit electrons and the so-called diamagnetic correction, relating to the changed

interaction between electrons in a magnetic field. For the ground state of erbium (( = 1,

! = 5, � = 6), Eq. (2.5) gives 6� = 1.167 053 2. The !( coupling correction to this is

Δ6!( = −0.001 334 7, whereas the relativistic and diamagnetic corrections combined yield

Δ6rel.+diamag. = −0.001 92, resulting in the corrected value6� , calc. = 1.163 798 5 [132].This is

in close agreement with the experimentally measured value of 6� , exp. = 1.163 801(1) [132].
Therefore, the magnetic moment of bosonic erbium in the energetically lowest state

⁶ The fine-structure constant is defined as U = 422`0/2ℎ ≈ 1/137, where 4 is the elementary charge and
`0 is the permeability of free space.
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with< � = −6 is

` =< �6� `� = −6.982 806(6)`� = −6.475 861(6) × 10−23 J T−1 . (2.6)

The case of excited states need to be approached slightly differently, using the �1�2 coup-

ling scheme. The 6-factor in this scheme can be calculated as

6� = 6�1
� (� + 1) + �1(�1 + 1) − �2(�2 + 1)

2� (� + 1) + 6�2
� (� + 1) + �2(�2 + 1) − �1(�1 + 1)

2� (� + 1) , (2.7)

where, 6�1 and 6�2 are the Landé 6-factors of the respective parts according to Eq. (2.5). For

both the 401 nm and the 583 nm transitions we have �1 = 6, �2 = 1 and � = 7. However,

although the state of the electrons in the 45 subshell (corresponding to �1) is 3H6 in both

cases, the electrons in the= = 6 shell are in the singlet 1P1 state for 401 nm, yielding6�2 = 1

for the blue, and in the triplet 3P1 state for 583 nm, yielding 6�2 = 1.501 for the yellow

transition. Using Eq. (2.7), we get 6� ,401 = 1.140 and 6� ,583 = 1.212 theoretically, which are

close to the experimentally measured values of 6� ,401 = 1.160 and 6� ,583 = 1.195 [117].

It is worth noting that given the fermionic isotope has a nonzero nuclear spin I, the

total electron angular momentum J couples with the nuclear spin to form the total angular

momentum F = J + I. This introduces a hyperfine structure into the energy levels and the

Landé 6-factor has to be calculated differently [126].

Besides calculating the magnetic moment, the 6-factor also comes into play when

the atom is subjected to a constant magnetic field B. In this case, the energy levels with

different< � split according to the Zeeman effect. The energy shift of the
��� ,< �

〉
state in

low magnetic fields⁷ is given by

Δ�/ =< �6� `�� . (2.8)

Knowing the precise value of 6� is important, as the Zeeman shift is different for different

energy levels, and the energy gap of a transition
���6,<6

〉
→ |�4,<4〉 changes in a magnetic

field according to

Δ�/ =
(
<464 −<666

)
`�� . (2.9)

Furthermore, using radio frequency (RF) fields, one can deliberately drive the < � →
< � + 1 transitions. Therefore, in an experiment, measuring the transition frequency can

be used to calibrate magnetic fields once the relevant 6-factor is known.

⁷ For the bosonic isotopes, the range of ‘low magnetic fields’ extends to � fields higher than typically
accessible in cold atom experiments, due to the unusually large spin–orbit coupling constant of
erbium [131].
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2.2 Atom–atom interactions

As it will be shown in §2.2.3, the length scales associated with scattering processes

are on the order of 10200 ≈ 5 nm, where 00 is the Bohr radius.⁸ As typical densities of

ultracold atomic clouds are on the order of = ≈ 1020m−3, corresponding to an average

interparticle distance 〈3〉 ≈ =−1/3 ≈ 200 nm � 10200 [24, 133], ultracold systems are

usually comparatively dilute and are in the regime where scattering events can be de-

scribed accurately by considering only two-body interactions.

The interaction potential * of two dipolar atoms, separated by a distance r, has

two main contributions: the van der Waals interaction *vdW present in all species and

the dipole–dipole interaction *dd. Neglecting higher-order interactions (e.g. dipole–

quadrupole or quadrupole–quadrupole), the interaction potential can be written as

* (r) = *vdW(r) +*dd(r) . (2.10)

The dipole–dipole interaction (DDI) is intrinsically anisotropic as the sign and strength

of the interaction depend on the orientation of the dipoles, and it is this anisotropy

which gives rise to the complex physics of dipolar quantum systems. The van der Waals

interaction is isotropic for simple atoms like alkalis, but it is anisotropic for atoms with

complex electronic structures, including for lanthanides.

2.2.1 Van derWaals interaction

The attractive interaction of two atoms, known as the van der Waals force, is caused

by mutually-induced electric multipoles and can be described by the potential

* (A ) = −�6

A 6
− �8

A 8
− �10

A 10
− · · · , (2.11)

where A is the interatomic distance and the �8 are called dispersion coefficients. The first

term is due to the induced dipole–dipole interaction. As other terms represent higher-

order contributions, usually only the first term is retained to approximate the interaction,

which is therefore described by the potential

*vdW = −�6

A 6
. (2.12)

⁸ The Bohr radius is defined as 00 = ℏ/<42U ≈ 5.29 × 10−11 m.
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This is the attractive part of the Lennard-Jones potential and is also called London

dispersion.⁹ The potential is attractive and is usually spherically symmetric. It is short-

ranged as it drops off as A−6, and is due to the interaction of the electrons of the two

interacting atoms.Wewill show in §2.2.4 that the strength of the van derWaals interaction

(the ‘contact interaction’) can be effectively controlled by changing the strength of an

external magnetic field, via utilising Feshbach resonances.

Due to the complex and non-spherical electron structure of the lanthanides, their

electrons interact in an anisotropic way. Therefore, in their case, the constant van der

Waals coefficient �6 needs to be replaced by a matrix of coefficients, C6, representing the

coupling between different pairs of total angularmomentum eigenstates. Calculating these

coefficients is difficult, although it has been done for some elements, including erbium.

For this element, the isotropic part¹⁰ of C6 is �6 = 1723 a.u. and the mean anisotropic

component is Δ�6 = 350 a.u. [134]. While this anisotropy has profound consequences

on the spectrum of Feshbach resonances, it can be shown that for ultracold collisions

it can still be described by a single number, the unique and isotropic B-wave scattering

length [135]. This is due to the short-range character of the potential and will be discussed

in §2.2.3 in more detail.

2.2.2 Dipole–dipole interaction

The dipole–dipole interaction (DDI) is the interaction between two magnetic (or

electric) dipoles, and is intrinsically long-range and anisotropic. As the contact interaction,

usually encountered in ultracold systems, is isotropic and short-range, the introduction

of the DDI greatly enriches the variety of physical phenomena in ultracold systems and

hence gained significant interest in the last few years.

The interaction potential*dd between two dipoles, pointing in directions e1 and e2
and separated by a distance r, is given by

*dd(r) =
�dd

4c
(e1 · e2)A 2 − 3(e1 · r) (e2 · r)

A 5
, (2.13)

where �dd is the dipolar coupling constant and A = |r|. The coupling constant is �dd =

`0`1`2 for particles with a magnetic dipole moment ` (e.g. lanthanides) and�dd = 3132/Y0
for particles with an electric dipole moment 3 (e.g. heteronuclear molecules), where Y0 is

the permittivity of free space.

⁹ The repulsive part becomes significant only at very small distances and is not considered here.
¹⁰ Here a.u. is the ‘atomic unit’ within the Hartree atomic units, where lengths are expressed in terms of
00 and energies are expressed in terms of hartrees (Ha), 1Ha =<42

2U2. Therefore, 1 a.u. = 060<42
2U2.
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Figure 2.2. Dipole–dipole interaction. (a) The anisotropic profile of the interaction po-
tential for a pair of parallel dipoles. The potential changes sign at the ‘magic
angle’, \< ≈ 54.7◦ (dashed lines). (b) Side-by-side dipoles (\ = c/2) repel each
other, head-to-tail dipoles (\ = 0) attract each other.

In the presence of an external magnetic field, (magnetic) dipoles align themselves

along the direction of the field (which we call I) and the atomic cloud becomes polarised.

For two identical (`1 = `2 = `) and aligned dipoles, the interaction simplifies to

*dd(r) =
`0

4c

`2 − 3(r̂ · -)2
A 3

=
`0`

2

4c
1 − 3 cos2 \

A 3
, (2.14)

where - is the magnetic dipole moment (vector) of the (magnetically polarised) atoms,

r̂ = r/A and \ is the angle between the orientation of the dipoles and the interatomic axis

(i.e. I and r).

As \ changes from 0 to c/2, the interaction changes its sign, and at the so-called

‘magic angle’ \< = cos−1(1/
√
3) ≈ 54.7◦, the DDI vanishes. For angles smaller than \< , the

potential is negative and the dipoles attract each other, whereas above \< the potential is

positive, and the dipoles repel each other. As the term 1− 3 cos2 \ ranges from −2 to 1, the

maximum attraction is twice as strong as the maximum repulsion.The \ = 0 configuration

is called the head-to-tail configuration and the \ = c/2 one is called the side-by-side

configuration. It is interesting to note that the angular dependency of the DDI is the

second-order Legendre polynomial %2(cos\ ) and the interaction is therefore 3-wave

symmetric (in the nomenclature of partial wave decomposition). The anisotropy of the

DDI is illustrated in Fig. 2.2.

In our system of magnetic dipoles, the intrinsic strength of the DDI cannot be tuned,
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as it depends on the (fixed) magnetic dipole moment of the atoms.¹¹ However, one can

reduce the effective strength of the DDI by rotating the dipoles rapidly [136]. Using a fast

rotating external magnetic field which the dipoles are still able to follow adiabatically,

from the DDI’s perspective, the dipoles will be effectively aligned along the rotation axis

but will only contribute with the relevant projection. This regime applies if the frequency

of the rotating field Ω is much smaller than the Larmor frequency l! = `�/ℏ but is much

higher than the typical frequencies of atomic motion, determined by the frequencies of

the trapping potential. In this limit, the atoms experience a time-average of the DDI (cf.

Eq. (2.14)), given by [65]

*dd(r) =
`0`

2

4c
1 − 3 cos2 \ ′

A 3
3 cos2 V − 1

2
, (2.15)

where \ ′ is the angle between the rotation and the interatomic axes, and V is the angle

between the rotation axis and the magnetic field. The averaged interaction potential

differs from the potential of aligned dipoles by a factor of (3 cos2 V − 1)/2. By varying V ,

this factor can be changed continuously from 1 to −1/2, thus allowing to invert the sign

of the DDI or to cancel it completely when V = \< , the magic angle.

The DDI is often presented in contrast to contact interactions, adding greatly to the

wealth of phenomena that can be explored, as it is not only anisotropic but also long-range.

However, it is worth noting that there is no unique definition for classifying interactions

as short- or long-range. One way to classify the range of interactions is to check whether

the chemical potential `2 depends only on the density =, or also on the total number

of particles # [137]. If `2 = `2 (=), the interaction is short-range, if `2 = `2 (#,=), the
interaction is long-range. Following this definition, it can be shown that an interaction is

short-ranged if it decays faster than A−� at large distances in � dimensions. Therefore, the

A−3 potential of the DDI is long-ranged in three dimensions (3D), but it is short-ranged

in 1D and 2D. The van der Waals interaction (A−6) is short-ranged in both 1D, 2D and

3D. We will see in §2.2.3 that the A−3 nature of the DDI leads to scattering properties

significantly different from other, faster-decaying interactions.

2.2.3 Scattering

The variety of ultracold dipolar physics has its roots in the anisotropic, long-range

interaction between atoms. This manifests itself in the relatively complex scattering be-

haviour of dipolar atoms, and it is this scattering behaviour which is directly responsible

¹¹ The situation is different e.g. for heteronuclear molecules, where the induced electric dipole moment
depends on the strength of the external electric field.
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for the diversity and complexity of physical phenomena. We will therefore now turn to

reviewing the scattering properties of dipolar atoms. First, we present an overview of scat-

tering theory and then examine how it applies to dipolar atoms. However, this is a complex

topic and a much more in-depth discussion can be found in Refs. 102, 103, 133, 138 and 139.

We will only consider elastic collisions, in which the total kinetic energy is conserved,

and we shall therefore assume that after collision the internal states of the particles are left

unchanged. However, it is worth noting that the dipolar interaction does allow non-elastic,

spin-changing collisions [140] and specialised cooling schemes have been realised based

on this effect [141–143]. However, if the Zeeman splitting is large compared to the thermal

energy and the atoms are in the lowest-energy spin state, such spin-flips are suppressed

as the other spin states correspond to higher, kinetically inaccessible energies.

Let us consider the scattering of two particles with mass<1 and<2, interacting via a

potential* (r1, r2). For simplicity, we investigate collisions in the centre-of-mass frame, in

which the problem of elastic collision amounts to the scattering of a single particle, with

reduced mass<A =<1<2/(<1 +<2) and relative momentum p = ℏk = ℏ(k1 − k2), off a

scattering centre at the origin with an interaction potential * (r1 − r2) = * (r) [103]. In
this system, the wave function for the centre-of-mass motion is a plane wave, and that of

the relative motion needs to satisfy the Schrödinger equation with the Hamiltonian � =

−ℏ2∇2/2<A +* (r).
First of all, let us suppose that* (r) either vanishes or is otherwise negligible outside

some finite region (the ‘interaction region’). Interaction with such a localised potential

brings the simplification that outside the range of the potential, the energy eigenstates of

the system take the form of plane waves, so a free particle can be represented as such

there. Therefore, one can write the wave function for the relative motion as the sum of

an incoming plane wave and a scattered wave,

k (r) = 48k·r +ksc(r) . (2.16)

The form ofksc(r) is fixed by the idea that outside the interaction region an eigenstate

should coincidewith a solution of the free-particle Schrödinger equation (i.e. a planewave),

only deviating from such a solution inside. Therefore, one can write the scattered wave as

an outgoing spherical wave at large distances, and the wave function for large A becomes

k (A ) = 48:I + 5 (\, i, :)4
8:A

A
, (2.17)

where (A, \, i) are spherical coordinates and we chose I to point in the direction of k.

The function 5 (\, i, :) is called the scattering amplitude and it generally depends on
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direction and energy. It is worth noting that although this form is actually not an exact

solution to the free-particle Schrödinger equation (as it is not a plane wave), its use is

justified as it is an asymptotic one.

The goal of scattering theory is to determine how particles are scattered (e.g. how

often and what their angular distribution is). The physical significance of the scattering

amplitude can be understood by considering the probability current of the scattered

particle.¹² One can define the differential cross section df , the ratio of the probability

per unit time that the scattered particle will pass through a surface element A 2 dΩ to the

probability current per unit area of the incoming wave. Here, dΩ is a small element of

solid angle. The probability current density of the incoming wave for the wave function

in Eq. (2.17) is ℏ:/<A , while the probability per unit time that the scattered particle will

pass through the surface element A 2 dΩ is (ℏ:/<A ) |5 (\, i, :) |2 dΩ for large distances A .

Therefore, the differential cross section is

df = |5 (\, i, :) |2 dΩ . (2.18)

It is worth noting that the differential cross section is a function of \ andi , although those

arguments are normally not explicitly written. Furthermore, some define the differential

cross section as df/dΩ, but this notation is misleading: the differential cross section is

not the derivative of anything; df is simply the probability per unit time for a scattered

particle to pass through a solid angle element dΩ at coordinates (\, i), normalised to the

incoming probability flux.

Equation (2.18) is only valid for the scattering of non-identical particles, e.g. atoms

occupying different states. For indistinguishable particles, the spatial part of thewave func-

tionmust be symmetrised for a boson and antisymmetrised for a fermion (see Fig. 2.3 for an

intuitive plot).Therefore, for identical particles, the differential cross section takes the form

df =

���� 5 (k, k′) ± 5 (k,−k′)√
2

����2 dΩ , (2.19)

where the positive sign applies to bosons and the negative sign applies to fermions, and

k′ is the relative wave vector after collision (k and k′ define \ and i).

If the scattering field can be treated as a mere perturbation to the free particle, the

scattering amplitude can be calculated as

5 (\, i, :) = − <A

2cℏ2

∫
* (r′)4−8q·r′ d3r′, (2.20)

¹² The probability current associated with the wave functionk (r) is defined as j = (k ∗p̂k −k p̂k ∗)/2<A ,
where p̂ = −8ℏ∇ is the momentum operator.
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Figure 2.3. Indistinguishable scattering processes. The two processes involving two
identical particles yield the same final state (up to parity), so their differential
cross section has to be symmetrised accordingly.

where q = k′ − k is the momentum transfer in the collision. This is called the (first) Born

approximation. However, in some special cases, more accurate results can be obtained.

Let us therefore assume that the interaction between the atoms is spherically symmet-

ric with range A0. In this case, the solution of the Schrödinger equation has axial symmetry

with respect to the direction of the incident particle, and the scattering amplitude depends

on direction only through the scattering angle \ . To take advantage of the axial symmetry

(and so that the Hamiltonian conserves !2 and !I), let us expand the wave function

for the relative motion using the spherical harmonics .<ℓ (\, i). As here !I = 0 and is

conserved, only the . 0
ℓ (\, i) ∝ %ℓ (cos\ ) terms contribute and we can writek in terms

of the Legendre polynomials %ℓ (cos\ ):

k =

∞∑
ℓ=0

%ℓ (cos\ )
':ℓ (A )
:A

, (2.21)

where the radial functions ':ℓ satisfy the 1D Schrödinger equation

− ℏ2

2<A

d2':ℓ
dA 2

+
(
* (A ) + ℏ2

2<A

ℓ (ℓ + 1)
A 2

)
':ℓ = �':ℓ . (2.22)

This is called partial wave analysis, where the ℓ = 0, 1, 2, . . . terms are called B, ?, 3, . . .

waves, i.e. the same nomenclature is used as in spectroscopy. The benefit of this ex-

pansion is that the partial waves, each carrying a definite angular momentum, scatter

independently of each other (they are independent ‘scattering channels’).

For large distances outside the range of the potential, A � A0, one can neglect the

interaction* (A ) and the second (the so-called centrifugal) term in Eq. (2.22). Then, given
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we effectively have a free particle, the solution coincides with a free wave up to a phase

shift. The solution takes the general form

':ℓ (A ) = �ℓ sin
(
:A − ℓ c

2
+ Xℓ

)
, (2.23)

where Xℓ is the phase shift (see Ref. 144 for a good illustration). To find the phase shifts Xℓ ,

one must enforce that Eqs. (2.17) and (2.21) give the same result, and so in general Xℓ
depends on the form of * (A ). By expanding Eq. (2.17) and ensuring consistency, one

finds �ℓ = (2ℓ + 1)8ℓ48Xℓ and

5 (\, :) = 1
28:

∞∑
ℓ=0

(2ℓ + 1)
(
428Xℓ − 1

)
%ℓ (cos\ ) . (2.24)

The total scattering cross section is obtained by integrating the differential cross

section over all solid angles, and it is given by

f (:) =
∫

df = 2c
∫ c

0
|5 (\, :) |2 sin\ d\ . (2.25)

Substituting Eq. (2.24) into this, one finds

f =
4c
:2

∞∑
ℓ=0

(2ℓ + 1) sin2(Xℓ) . (2.26)

It is worth noting at this point the centrality of the phase shifts for deducing the physical

behaviour. Once phase shifts are determined, all scattering properties can be inferred.

One should not forget that this result only holds for non-identical particles. For iden-

tical particles, due to the symmetry of the states, we need to use the symmetrised df

(cf. Eq. (2.19)). Using that, one can observe that only even (odd) values of ℓ contribute to

the differential cross section for bosons (fermions) due to the symmetry requirements.

Furthermore, the factor 1/√2 avoids double counting by effectively integrating over only

half the total solid angle 4c , and so the cross section can be written

fident. =
8c
:2

∞∑
ℓ≥0 even
(ℓ≥1 odd)

(2ℓ + 1) sin2(Xℓ) . (2.27)

We will now concentrate on the low-energy limit,

:A0 � 1 and A � 1
:
, (2.28)
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relevant for ultracold-atom experiments.¹³ In this limit, the energy of the relative particle

is negligible and one can set � = 0. In the case of ℓ = 0, Eq. (2.22) takes the form

d2':0
dA 2

− 2<A

ℏ2
* (A )':0 = 0 . (2.29)

The solution of Eq. (2.29) needs to match the asymptotic form Eq. (2.23) in the region

A0 � A � 1
:
, (2.30)

where both equations are applicable. In this region, one can also neglect the interaction

term in Eq. (2.29) and the solution takes the linear form

':0 = 20(1 − ^A ) , (2.31)

where the value of ^ depends on the choice of the potential * (A ). On the other hand,

for :A � 1, the asymptotic solution can also be expanded, yielding the same form as

Eq. (2.31) if we set 20 = 48X0 sinX0 and

^ = −: cotX0 . (2.32)

Therefore, for small : ,

X0 = −:
^
. (2.33)

A similar investigation shows that the phase shifts at higher values of ℓ behave like

Xℓ ∝ :2ℓ+1 [139], and so at low temperatures the ℓ = 0 term (the B-wave) dominates the

scattering amplitude which can be written as

5 (\, :) = X0

:
= −1

^
≡ −0B . (2.34)

Therefore, at low temperatures the scattering amplitude is a constant, independent of

angles or energies: lim:→0 5 (\, :) = −1/^ . In fact, 0B = 1/^ is called the B-wave scattering

length and is a very important parameter for ultracold-atom experiments, defining the

(B-wave) interaction strength. Per Eq. (2.26), the scattering cross section for non-identical

¹³ This is the limit where the energy � of the incoming particle is much smaller than the interaction* (A )
and the centrifugal term. The characteristic energy of the interaction can be estimated using Heisen-
berg’s uncertainty principle. If we say that within the potential the uncertainty of the atom’s position
is ΔG ≈ A0, then the uncertainty of its momentum is Δ? ≈ ℏ/ΔG = ℏ/A0. Therefore, the characteristic
energy associated with the potential is Δ?2/2<A = ℏ2/2A 20<A . This energy needs to be much higher than
the energy of the incoming particle, which yields the limit :A0 � 1. On the other hand, comparing
the centrifugal factor ℓ (ℓ + 1)/A 2 with 2<A�/ℏ2, one can deduce the other criterion, A � 1/: .
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particles can therefore be written as

f = 4c02B , (2.35)

whereas per Eq. (2.27) for identical bosons it is

f� = 8c02B (2.36)

and for identical fermions it is

f� = 0 . (2.37)

The latter is a striking result—the scattering cross section for identical fermions is zero.

This means that if identical fermions only interact via contact interactions, they cannot

be cooled via evaporation which intrinsically relies on scattering for the thermalisation

of the gas in the process.

Classically, the dominance of the B-wave term can be understood by examining the

potential term in Eq. (2.22). Specifically, the second term in the effective potential presents

a so-called ‘centrifugal barrier’, and a relative particle with an energy much smaller than

the barrier is unable to reach small A as it is reflected on the barrier. Therefore, for ℓ > 0,

the short-range potential* (A ) inside the barrier has no effect. The case of ℓ = 0 is special

as there is no barrier then. One thus expects that the partial scattering amplitudes (or

equivalently the phase shifts Xℓ (:)) will vanish as : → 0 for all partial waves with ℓ > 0.

However, for certain potentials, this barrier can also lead to quasi-bound states in the

potential well. If the incident relative particle has an energy close to the energy of such

a quasi-bound state, a strong scattering resonance can be observed.¹⁴ These so-called

‘shape resonances’ (depending on the shape of the scattering potential) may strongly

enhance the contribution of ℓ > 0 partial waves in an energy domain where one would

naïvely expect pure ℓ = 0 (B-wave) scattering [103, 139].

While our discussions have been relatively abstract so far, not fixing the form of

the interaction potential, we reached the important result that the exact form of the

potential does not actually matter—only the associated scattering length 0B . In other

words, although the details of the interaction potential determine the scattering length,

it is only 0B that matters in the end. This also simplifies the experimental effort: instead

of having to probe the interaction potential at different inter-particle distances, it is

sufficient to measure only the scattering length. Calculating 0B for an arbitrary potential

is difficult in general, but can be done e.g. for a square well [103, 139]. It is worth noting

¹⁴ This can be phenomenologically explained by the scattering particle spending an extended amount of
time in the quasi-bound state, leading to an enhanced interaction.
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Figure 2.4. Radial part of the wave function. Solutions of Eq. (2.29) for a truncated
van der Waals potential −�6/A 6 (solid lines; up to a scaling factor�) [133]. The
repulsive part of the Lennard-Jones potential is approximated with a hard core
of radius A2 (the full potential is shownwith a dashed line).The solutions shown
are for A2 = 0.118A0 (orange), A2 = 0.121A0 (green) and A2 = 0.122A0 (blue),
where A0 = 4

√
2<A�6/ℏ2 is the characteristic range of the potential. We see the

solutions tend to a line above A0 and are very sensitive to the size of the core;
the corresponding scattering lengths (proportional to the negative inverse
slope of the solutions for A � A0) are 0B = 0.4A0, −33A0 and −0.3A0, respectively.

that the scattering length can be positive and negative, and can be much larger than the

interaction range, tending to infinity at the development of a new bound state of the

scattering potential. A schematic behaviour of the solutions of Eq. (2.29) is shown in

Fig. 2.4 for positive and negative values of the scattering length, respectively.

Remember that according to Eq. (2.21), the wave function at low energies can be

written as

k =
20

:

(
1
A
− 1
0B

)
. (2.38)

In fact, this is an exact solution of the Schrödinger equation(
− ℏ2

2<A

∇2 +* (r)
)
k = 0 (2.39)

if we assume the potential is

* (r) = *ps(r) =
2cℏ20B
<A

X (r) m
mA
A , (2.40)
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where X (r) is the Dirac delta function.¹⁵ *ps is called a pseudo-potential—a stand-in

potential which is much easier to work with, but which still gives exactly the same results

as a more complicated * (r) with the same scattering length. In fact, given only 0B is

relevant for practical purposes, we can simplify this further by choosing a potential

which gives 0B as its scattering length in the Born approximation at the zero energy

limit. Such a potential is 6BX (r) = 2cℏ20BX (r)/<A which is called the zero-range contact

interaction potential. It is worth noting that while the scattering cross section depends

on 02B , the potential depends directly on 0B . This will be important later on when we

consider Bose–Einstein condensates.

Scattering of dipolar atoms

Analysing the scattering of real atoms is much more complicated, as their interactions

are neither necessarily finite-range nor isotropic. However, some of the analysis that we

presented so far still remains valid [145]. Specifically, the expansion in Eq. (2.21) and the

associated partial wave analysis is still possible.

We have previously discussed that for a finite-range potential, the phase shifts are

Xℓ ∝ :2ℓ+1 for small : . In our case, both the van der Waals interaction and the dipole–

dipole interaction scale like a power law A−= at large distances, so in the strict sense, these

are not finite-range.¹⁶ For such potentials, Xℓ ∝ :2ℓ+1 only holds for ℓ < (= − 3)/2, and
for higher-order partial waves Xℓ ∝ :=−2 [138]. This means that in the case of the van der

Waals potential (= ≥ 6), all phase shifts become negligible compared to X0 for ultracold

temperatures (: → 0). Therefore, the cross section is still dominated by the ℓ = 0 term

(B-wave scattering) and we can still describe scattering with a unique scattering length 0B ,

even if the van der Waals interaction is not isotropic.

On the other hand, for the DDI we have = = 3, meaning that all phase shifts scale as

Xℓ ∝ : , and so all partial waves need to be taken into account. Furthermore, due to its

anisotropic nature, this interaction does not conserve !I and so it mixes the scattering

channels (the partial waves), and a simple description is no longer possible. Importantly,

while for isotropic interactions the total scattering cross section does not depend on the

direction of the incident relative particle, for the dipolar interaction it does. However, in

the ultracold regime, the average scattering cross section (averaged across all incident

directions) still takes a constant value, i.e. it does not depend on the collision energy [146].

¹⁵ One can easily check this using the fact ∇2 (1/A ) = −4cX (r).
¹⁶ For the van der Waals interaction, a characteristic length scale can be derived by solving Δ?2/2<A =

�6/06vdW, where Δ? = ℏ/0vdW as per the uncertainty principle, yielding 0vdW =
4
√
2<A�6/ℏ2. For 166Er,

0vdW ≈ 15000.
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For dipolar scattering, this regime is reached when the collision energy is smaller than

the natural energy scale of the dipolar interaction,

�dd =
`0`

2

4c03dd
, (2.41)

where the natural length scale 0dd for two colliding (identical) dipoles is defined as¹⁷

0dd =
<`0`

2

12cℏ2
, (2.42)

which is sometimes called the ‘dipolar length’. The numerical prefactor in 0dd is chosen

such that a three-dimensional homogeneous condensate becomes unstable to local density

perturbations for 0B ≤ 0dd [66]. For 166Er, 0dd ≈ 6600.

In the Born approximation (i.e. where the potential is a perturbation) and at small

energies, the angle-dependence can be described exactly [147], and it can be shown that

the average cross section arising from even partial waves is

f4 =
4c
5
02dd , (2.43)

and from odd partial waves it is

f> =
12c
5
02dd . (2.44)

Therefore, the total average cross section for bosons is

f� =
8c
5
02dd + 8c02B , (2.45)

and for fermions it is

f� =
24c
5
02dd . (2.46)

This means that dipolar fermions have a finite cross section even at very low energies

(in fact three times as large as purely dipolar bosons), and can therefore be cooled

evaporatively [148]. It is also worth noting that dipolar scattering has also been studied

beyond the Born approximation, indicating a small, temperature-dependent enhancement

of the DDI [149].

Even with the dipolar interaction taken into account, the pseudo-potential formalism

can also still be employed [145, 150–152]. Interestingly, besides the long-range contribution,

the potential *dd also generates a contribution to the (short-range) B-wave scattering

¹⁷ This expression can be derived (up to numerical prefactors) by solving Δ?2/2<A = �dd, where Δ? =

ℏ/0dd as per the uncertainty principle.
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length due to the coupling between different scattering channels [153–156]. As a result,

changing the strength of the DDI also results in a change in the short-range part of

interparticle interaction. Therefore, for a gas of identical, polarised dipolar atoms, the full

pseudo-potential can be written as

*ps(r) =
4cℏ2

<

(
0effB X (r) +

3
4c
0dd

1 − 3 cos2 \
A 3

)
, (2.47)

where 0effB is the effective B-wave scattering length and we used the fact that for identical

particles<A =</2, so 6B = 4cℏ20effB /<.

Given the choice of prefactors in 0dd, it can also be used to compare the relative

strength of the contact and dipole–dipole interactions, by defining the relative dipole

strength¹⁸

Ydd =
0dd

0B
. (2.48)

2.2.4 Feshbach resonances

We have already seen that when the energy of a bound state is resonant with the

energy of the scattered particle (e.g. due to a shape resonance), the scattering cross

section greatly increases. While shape resonances are induced by quasi-bound states in

the collision channel due to the shape of the scattering potential itself, a resonance can

also be induced by a bound state of another collision channel. This is called a Feshbach

resonance [58]. This phenomenon has been exploited widely, due to the fact that the

energy of the bound state and hence the scattering length can be tuned using an external

magnetic field as we will shortly see. This means that the strength and sign of the contact

interaction can be controlled relatively easily in experiments.

First theoretical investigations regarding resonances between scattering channels

took place in the 1930s [157–159], with further work by Feshbach [160, 161] and Fano [162],

and it is after them that the effect is named Fano–Feshbach resonance, or Feshbach

resonance (FR) for short. Interestingly, Feshbach himself considered his name being

attached to a well-known resonance phenomenon as mere atomic physics jargon [163,

164]. Fano’s name is usually associated with the asymmetric line shape of such a resonance,

called a ‘Fano profile’.

Feshbach resonances are not exclusive to ultracold atoms—in fact, Feshbach himself

thought about them in the context of nuclear physics, and they also appear in molecular

¹⁸ From here on, we drop the ‘eff’ superscript from 0effB for readability and take 0B to include contributions
from all kinds of interactions.
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and chemical physics [58]. As we will see later, the resonance provides access to a weakly-

bound (molecular) state of the atoms, leading to the formation of ultracold molecules,

commonly referred to as Feshbach molecules [58]. Such molecules can then be transferred

into a more deeply bound state via adiabatic transfer schemes [165]. FRs were first detected

experimentally in the 1970s [166, 167], and gained traction after the demonstration of

the tunability of interactions in a BEC in 1998 [56]. This was an important milestone for

ultracold-atom research, and exploiting Feshbach resonances became a well-established

and effective tool to tune the scattering length over a wide range, from strongly attractive

via non-interacting to strongly repulsive regimes.While for single-valence-electron atoms

(alkalis) methods to calculate 0B are well-established, predictive scattering models for

multi-electron atoms are more difficult to develop as more approximations are needed. In

the case of complex electronic structures, such as for lanthanides, the required treatment

is highly non-trivial, involving many atomic potentials and complex interactions [65,

134]. While FRs offer great flexibility, ultracold-atom experiments usually try to avoid

ramping the magnetic field very close to (or through) a resonance, as the large scattering

length also greatly increases the rate of three-body collisions, which lead to atom loss

from the trap.¹⁹ This is discussed in detail for the case of erbium in Chapter 5.

We will now turn to the phenomenological explanation of Feshbach resonances, based

on comprehensive reviews for dipolar [65] and non-dipolar atoms [58]. Let us assume

that the atoms collide with energy � in a certain interaction channel. This channel is

referred to as an open channel, as it is energetically possible. Let us also assume that a

different interaction channel also exists (e.g. the atoms colliding in a different spin state),

which is energetically not allowed for our collision energy �: this is referred to as a closed

channel. If the interaction potential of the closed channel supports a bound state and

a coupling exists between the open and closed channels, the atoms can transfer to this

bound state and a resonance can occur—this is called a Feshbach resonance. The scenario

is visualised in Fig. 2.5. The existence of a (quasi-)bound state close to the energy of the

colliding atoms greatly affects the scattering cross section. One can think of this in the

context of the atoms forming a virtual bound state temporarily, and the closer the energy

of the atoms to this bound state is, the more this state affects the interaction properties.

While in shape resonances the quasi-bound state is induced in the open channel by the

shape of the interaction potential itself, Feshbach resonances occur due to the coupling

of the colliding atoms to a bound state in a different interaction channel.

The coupling between the channels can be e.g. hyperfine in nature, and for dipolar

atoms, the anisotropic interaction itself provides a coupling. (Remember that we observed

¹⁹ It can be shown that the three-body loss coefficient !3 scales as !3 ∝ 04B close to a Feshbach reson-
ance [168].
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Figure 2.5. Mechanism of Feshbach resonances. (a) Interaction energy in the open (en-
trance) and the closed collision channels (blue and green lines, respectively),
and the energy of the colliding particles (dashed line). In a magnetic Fesh-
bach resonance, the relative energy �1 (�) of a molecular bound state can be
changed by tuning the magnetic field. When �1 is close to the energy of the col-
liding particles, the scattering length diverges. (b) Behaviour of the scattering
length0B near a Feshbach resonance (blue line).The resonance can be described
by its position �0 and width Δ�, defined as the separation between �0 and
the magnetic field �zero for which 0B = 0 (also called the zero crossing, marked
on the figure). Far from the resonance, 0B settles to the background value 0bg.

earlier that the anisotropy of the dipolar interaction mixes the collision channels.) It is

worth noting that the bosonic isotopes of Er do not have a hyperfine structure, so FRs arise

only due to the interaction anisotropy. However, given the large quantum numbers of the

electronic configuration and the fact that ℓ > 0 channels are involved even at ultracold

temperatures, a large number of Feshbach resonances occur for magnetic lanthanides.

Figure 2.6 shows the resonances for 166Er and 168Er, up to fields²⁰ of �0 = 8G. Unlike most

other species used in ultracold-atom experiments, the Feshbach spectrum of Er is very

rich even in this narrow field interval. Experimental measurements have been performed

up to much higher fields, and a resonance number density of ca. 3 G−1 was observed for

both isotopes [61, 126, 169].

For Cr, the ground state electron configuration is spherical, so assigning a particular

FR to a particular channel configuration is easier (given the short-range van der Waals

interaction is isotropic). On the other hand, lanthanides have an anisotropic electron

²⁰ In ultracold-atom experiments it is customary to express the magnetic field in gauss (G), 1G = 10−4 T.
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Figure 2.6. Feshbach resonances in 166Er and 168Er. Scattering length 0B as a function
of the magnetic field �, for the two most abundant isotopes, (a) 166Er and
(b) 168Er, for fields up to 8G, using data from Refs. 126 and 170. The newly
discovered loss features presented in Chapter 5 are shown with dashed lines
(the scattering length has not been determined around these resonances yet).

configuration, which makes describing FRs more difficult. Moreover, it was shown that

the arising anisotropy of the van der Waals interaction and the anisotropy of the dipolar

interaction both significantly contribute to the number of FRs [171]. Furthermore, given

the high number of possible channels, more than 40channels need to be considered in sim-

ulations to reproduce the density of resonances (i.e. the number of FRs in a unit interval of

magnetic field) reliably [169]. It is also worth noting that given the possible combinations

of channels depend on the energy of the colliding particles, the number, exact shape and

location of FRs are temperature-dependent. This is explored in Chapter 5 for Er.

If the states in the different channels have different magnetic moments (e.g. due

to the differing spin configurations), applying an external magnetic field changes their

relative energy (the energy gap) according to the Zeeman effect. If the open channel

has a magnetic moment `> and the closed channel has `2 , their relative energy changes

according to Δ� = (`> − `2)� (cf. Eq. (2.9)). This means that by changing the magnetic

field, the energy of a bound state in the closed channel can be made resonant with the

energy of the atoms in the open channel, thereby affecting the scattering length. This has
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been greatly exploited within ultracold atoms as it is a convenient way to control the

magnitude and sign of interactions. It is also worth noting that the method of changing

the relative energy need not be magnetic, it can also be e.g. optical, which opens the

possibility of ultrafast and local control of interparticle interactions [172–174].

The scattering length in the vicinity of a resonance located at a magnetic field �0
(where 0B diverges) with width Δ� can be approximated as [175]

0B = 0bg

(
1 − Δ�

� − �0

)
, (2.49)

where 0bg is the background value of 0B , away from the resonance (i.e. the scattering

length associated with the open channel alone). The width of the resonance is defined as

the change in the magnetic field needed from the resonance (at �0) such that 0B = 0, and

it relates to how strong the coupling is between the different channels. This form can be

understood by expanding ^ of Eq. (2.33) to first order in � around the resonance [102].

Given ^ = 0 at the resonance (as 0B = 1/^), we see 0B ∝ 1/(� − �0) close to it. Away from

the resonance, it takes the background value 0bg, so altogether it is usefully parametrised

as in Eq. (2.49). The form of 0B near a resonance is shown in Fig. 2.5 and it is worth noting

that both 0bg and Δ can be positive or negative. Furthermore, if there are more resonances

present, the scattering length can be approximated as [176, 177]

0B = 0bg

∏
8

(
1 − Δ�8

� − �0,8

)
. (2.50)

2.3 Dipolar Bose–Einstein condensates

Our experimental effort focuses on bosonic isotopes of erbium. A Bose gas, when

cooled down sufficiently (typically to the order of 100 nK), undergoes a phase transition

whereby the ground state of the system is occupied by a macroscopic number of atoms.

This is called Bose–Einstein condensation (BEC). At very cold temperatures and weak

interactions, the gas can be described by an order parameter, the so-called macroscopic

wave function, with small excitations on top of the ground state. This approach provides

the basis for exploring the influence of interactions and trapping geometry on the be-

haviour of the system theoretically, and in what follows we review some of the most

important equations and results based on Refs. 64, 102 and 133.
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2.3.1 Origins of Bose–Einstein condensation

The origins of Bose–Einstein condensation lie in the limitations of the available

phase space at very low temperatures. For simplicity, we will first consider a free, non-

interacting Bose gas (a gas made up of identical bosons) in three dimensions, with a fixed

atom number # .

For bosons in thermodynamic equilibrium, the average occupation number of an

energy level with energy Y: is given by

〈=:〉 = =(Y:) =
1

4V (Y:−`2 ) − 1
, (2.51)

where `2 is the chemical potential, V = 1/:�) , :� is the Boltzmann constant and ) is

the temperature. It is important to note that `2 must be smaller than the lowest energy

level Y0, as otherwise for `2 = Y0 the occupation number would be infinite, which would

contradict our assumption that the atom number is finite. The density of states, i.e. the

number of states within a unit interval of energy, is given by

6(Y) = +<3/2
√
2c2ℏ3

√
Y , (2.52)

where< is the atomic mass and+ is the volume of the sample. The number of atoms that

can be accommodated in these states can be expressed as

#ex =

∫ ∞

0
=(Y)6(Y) dY . (2.53)

To accommodate the largest possible number of atoms, we can take the limit `2 → 0 and

obtain

#ex = +

(
<:�)

2cℏ2

)3/2
Z

(
3
2

)
, (2.54)

where Z (G) is the Riemann zeta function [178]. We see this is a finite number and

#ex ∝ ) 3/2.

This is an important result as if # > #ex, some (# −#ex) atoms cannot be accommod-

ated in the excited states and have to occupy (condense into) the ground state. Combining

the numerical prefactors to give

#ex = #

(
)

)2

) 3
2

, (2.55)

where)2 is called the critical temperature, we find that the number of atoms in the ground
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state is given by

#0 = #

(
1 −

(
)

)2

) 3
2

)
. (2.56)

As the number of atoms in the ground state #0 is proportional to the total number of

atoms # , this is called macroscopic occupation. (Note that it is only the ground state that

is macroscopically occupied.) It is important to note that Bose–Einstein condensation does

not occur in all systems, as)2 crucially depends on the details of the system via 6(Y)—here

we have taken the simple example of non-interacting free particles in three dimensions.

For example, it can be shown that non-interacting free atoms in two dimensions will

never form a BEC. For neutral atoms in harmonic traps, )2 is on the order of 100 nK, i.e.

atoms need to be cooled below this very cold temperature to obtain a BEC, which takes a

significant experimental effort.

The need for this cold temperature can be understood in terms of the phase-space

density d = =λ3dB, where= is the number density of the atoms and λdB = ℎ/
√
2c<:�) is the

thermal de Broglie wavelength. Equation (2.54) can be rewritten in terms of this quantity as

dmax = Z

(
3
2

)
≈ 2.612 , (2.57)

where dmax is the maximum phase-space density before atoms start accumulating at the

ground state for an unconfined, non-interacting Bose gas. If the phase-space density

exceeds dmax (either via an increase in the number density or a reduction in temperature),

Bose–Einstein condensation will occur.

We emphasise again that the value of dmax depends on the geometry and interactions

in the system. For the important case of harmonic trapping, the density varies across the

gas, so d does too. It can be shown that BEC will occur if the peak phase-space density

(achieved at the centre of the trap) exceeds dmax = Z (3/2), which is the same result as for

an unconfined gas (except that in that case the phase-space density is uniform across the

gas) [133, 179].

We see d ∝ =) −3/2, so to achieve the critical d , we need to either increase the density

or reduce the temperature. Given high densities lead to excessive three-body losses that

destroy the condensate (see Chapter 5 for a thorough discussion), the density needs to be

kept low. Therefore, to achieve the critical d , the temperature also needs to be extremely

low. In fact, the required temperatures make ultracold-atom experiments the coldest

places in the universe according to our current knowledge, as the temperature of outer

space (2.7 K [180, 181]) and the coldest natural object ever observed (the Boomerang

Nebula at 1 K [182], 5000 light years away from us in the constellation Centaurus) are
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many orders of magnitude warmer than ultracold atoms.

2.3.2 Gross–Pitaevskii equation

We will now turn to the formal description of the condensate, using the formalism of

second quantisation. Let us start by defining the so-called quantum field operator Ψ̂† (Ψ̂),

which creates (annihilates) a particle at position r. It can be written via the single-particle

statesk8 as

Ψ̂(r, C) =
∑
8

k80̂8 , (2.58)

where 0̂†
8
(0̂8 ) creates (annihilates) a particle in the single-particle state k8 . Given the

ground statek0 is macroscopically occupied (whereas the other states are not), it will be

convenient to separate it out as

Ψ̂(r, C) = k00̂0 +
∑
8>0

k80̂8 . (2.59)

Given for the ground state
〈
0̂
†
00̂0

〉
= #0 � 1, the operators are of O

(√
#0

)
. As their

commutator
[
0̂0, 0̂

†
0

]
= 1 � #0, we can replace the operators with a complex number

(c-number)
√
#0, which is called the Bogoliubov approximation.²¹ This is afforded by

the fact that we have #0 � 1 atoms in the BEC while all other states are occupied to a

much smaller extent, and it amounts to treating the macroscopic component of the field

operator as a classical field. We can then rewrite Eq. (2.59) as

Ψ̂(r, C) = Ψ0(r, C) + XΨ̂(r, C) , (2.60)

where Ψ0(r, C) =
√
#0k0(r, C). If one can neglect the non-condensed component XΨ̂ (which

is the case for dilute Bose gases at very low temperatures), the system behaves like a

classical object. This is analogous to the classical limit of quantum electrodynamics (QED),

where the classical electromagnetic field replaces the microscopic description of photons.

Ψ0 is called the macroscopic wave function (or condensate wave function), and plays

the role of an order parameter for the phase transition to a BEC (the BEC exhibits long-

range order). Expressing the macroscopic wave function as Ψ0 =
〈
# − 1

�� Ψ̂ ��# 〉
and

recalling that the stationary states evolve in time according to 4−8�C/ℏ, we see that the

time evolution of Ψ0 is according to 4−8 (�#−�#−1)C/ℏ. Given �# − �#−1 ≈ m�/m# = `2 for

²¹ Recall that the commutation relations for bosons are
[
0̂8 , 0̂

†
9

]
= X8 9 and

[
0̂8 , 0̂ 9

]
=

[
0̂
†
8
, 0̂

†
9

]
= 0, where

X8 9 is the Kronecker delta.
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large # , we find

Ψ0(r, C) = Ψ0(r)4−8`2C/ℏ . (2.61)

It is interesting to note that the time evolution of the order parameter is not governed by

the energy of the condensate, as would happen for ordinary wave functions, but by the

chemical potential which is a key parameter in the physics of BECs. It is important to

remember at this point that the macroscopic wave function is not the many-body wave

function of the system, hence we should not expect the same time evolution. We will

expand on this important distinction later on.

Given
〈
Ψ̂†Ψ̂

〉
= # , if all atoms are in the condensate and excitations can be neglected,

we have ∫
|Ψ0(r, C) |2 d3r = # . (2.62)

Therefore, |Ψ0(r, C) |2 equals the (number) density of the gas,

=(r, C) = |Ψ0(r, C) |2 . (2.63)

Let us now turn to the description of non-uniform condensates, which is the case for

BECs formed in a trap. The Hamiltonian of the system in terms of the field operator is

�̂ =

∫
ℏ2

2<
∇Ψ̂†(r)∇Ψ̂(r) d3r +

∫
+trap(r)Ψ̂†(r)Ψ̂(r) d3r

+ 1
2

∬
Ψ̂†(r′)Ψ̂†(r)+int(r′ − r)Ψ̂(r′)Ψ̂(r) d3r′ d3r , (2.64)

where +trap(r) is an external trapping potential and +int(r) is the two-body interaction

potential. In this Hamiltonian, the first term captures the kinetic energy, the second

corresponds to the potential energy due to trapping and the third captures the contribution

of interactions. Here we took advantage of the fact that we are considering dilute gases,

where the range of interatomic forces is much less than the average interparticle distance,

allowing one to consider only pairs of interacting particles, while configurations with

three (or more) particles interacting simultaneously can be safely neglected.

To devise the equations governing the field Ψ0(r, C), we can use the Heisenberg

equation to deduce

8ℏ
m

mC
Ψ̂(r, C) =

[
Ψ̂(r, C), �̂

]
=

(
− ℏ2

2<
∇2 ++trap(r, C) +

∫
Ψ̂†(r′, C)+int(r′ − r)Ψ̂(r′, C) d3r′

)
Ψ̂(r, C) , (2.65)
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where we used the commutation relations of the field operator Ψ̂,[
Ψ̂(r), Ψ̂†(r′)

]
= X (r − r′) ,

[
Ψ̂(r), Ψ̂(r′)

]
=

[
Ψ̂†(r), Ψ̂†(r′)

]
= 0 . (2.66)

Proceeding similarly to Eq. (2.60), one can replace Ψ̂ with Ψ0 when the non-condensed

component XΨ̂ can be neglected and obtain²²

8ℏ
m

mC
Ψ(r, C) =

(
− ℏ2

2<
∇2 ++trap(r, C) +

∫
Ψ∗(r′, C)+int(r′ − r)Ψ(r′, C) d3r′

)
Ψ(r, C) . (2.67)

Let us now consider the two-body interaction potential. Given the distance between

the interacting particles is large, we can use the asymptotic expression for the wave

function of their relativemotion, whose form is fixed by the scattering amplitude 5 (\, i, :)
as we have shown in §2.2.3 (cf. Eq. (2.17)). This implies that all macroscopic properties

of the system can be expressed in terms of 5 (\, i, :), which for short-range interactions

and low energies is determined by the B-wave scattering length 0B (cf. Eq. (2.34)). This

underlines the importance of 0B when describing the properties of the condensate.

If the Born approximation is valid, we can reproduce the low-energy scattering prop-

erties of the full two-body potential +int(r) by using the (effective) pseudo-potential [150,

151] as presented in Eq. (2.47),

+eff(r′ − r) = 4cℏ20B (`)
<

X (r′ − r) m

m |r′ − r| |r
′ − r| + `0

4c

`2 − 3(n · -)2

|r′ − r|3
, (2.68)

where - is the magnetic dipole moment (vector) of the (magnetically aligned) atoms

and n = (r′ − r)/|r′ − r|. Inserting this into Eq. (2.67) we finally obtain the (dipolar,

time-dependent) Gross–Pitaevskii equation (GPE) [183–185],

8ℏ
m

mC
Ψ(r, C) =

(
− ℏ2

2<
∇2 ++trap(r, C) + 6B |Ψ(r, C) |2 + Φdd(r, C)

)
Ψ(r, C) , (2.69)

where the short-range interaction parameter is 6B = 4cℏ20B/< and the dipolar contribu-

tion is

Φdd(r, C) =
∫

|Ψ(r′, C) |2*dd(r′ − r) d3r′, (2.70)

where*dd(r′ − r) is according to Eq. (2.14). In the case of stationary states, where Ψ(r, C)
evolves in time according to Eq. (2.61), this leads to the time-independent GPE [186],

`2Ψ(r) =
(
− ℏ2

2<
∇2 ++trap(r) + 6B |Ψ(r) |2 + Φdd(r)

)
Ψ(r) . (2.71)

²² From here on, we drop the index 0 for ease of notation.
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The time-independent GPE can be simplified further when the Hamiltonian is dominated

by the atomic interactions and the trapping potential, and the kinetic energy can be

neglected [187]. This is called the Thomas–Fermi approximation, in which case the time-

independent GPE becomes

`2 = +trap(r) + 6B |Ψ(r) |2 + Φdd(r) . (2.72)

The benefit of this approximation is that it yields an equation which is much easier to

solve than the full GPE, and in some cases, Eq. (2.72) is analytically solvable.

Equations (2.69) and (2.71) are the main theoretical tools for investigating dilute

non-uniform Bose gases at low temperatures, as the time-independent GPE Eq. (2.71) can

be used to describe stationary states (including the ground state) and the time-dependent

GPE Eq. (2.69) can be used to explore the dynamics of the condensate. They are also

the starting point for our considerations regarding dipolar gases in box-like potentials

in Chapter 6. In most cases, the GPE has to be solved numerically for Ψ to give a self-

consistent solution, which is not an easy task as it is not linear in Ψ(r), Φdd is non-local

and it involves an integral. Solutions of Ψ have to satisfy the normalisation condition

Eq. (2.62), and for the time-independent case, the value of the chemical potential `2 is

fixed by this normalisation condition.

It is important to point out, that the GPE is not the Schrödinger equation, and Ψ(r)
is not the many-body wave function. Ψ(r) is the order parameter of Bose–Einstein

condensation, sometimes called the condensate (or macroscopic) wave function. This

means that different solutions to the GPE, Ψ0 and Ψ1 , need not be orthogonal, but the

corresponding many-body wave functions, Φ0 and Φ1 , do. Furthermore, we need to

remember that `2 = m�/m# ≠ �/# .

As a consequence of the diluteness condition, one can ignore correlations among the

particles to first approximation, which is called the Hartree–Fock approximation. One

can then write the many-body wave function of the system as

Φ(r1, r2, . . . , r# ) =
#∏
8=1

k (r8) =
#∏
8=1

1
√
#
Ψ(r8) , (2.73)

wherek (r) is the single-particle wave function. In this case, we see

〈Φ0 |Φ1〉 =
(
1
#

∫
Ψ∗
0Ψ1 d

3r

)#
, (2.74)

which vanishes as # → ∞, as 〈Ψ0 |Ψ1〉/# < 1 except if 0 = 1.
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Equation (2.71) admits different solutions, and the solution with the lowest energy

defines the macroscopic wave function of the ground state, which is a real function. As

the energy of the system is given by

� =
〈
�̂

〉
=

∫ (
ℏ2

2<
|∇Ψ(r) |2 ++trap(r) |Ψ(r) |2 +

6B

2
|Ψ(r) |4 + 1

2
Φdd(r) |Ψ(r) |2

)
d3r , (2.75)

we see that the phase of the generally complex Ψ does not affect the contributions of

the trap potential or the interactions to the energy. Writing Ψ(r) = |Ψ(r) |48i (r) , such that

i (r) is the phase of the macroscopic wave function, we find |∇Ψ(r) |2 = (∇|Ψ(r) |)2 +
|Ψ(r) |2 (∇i (r))2. We see that any variation in i would lead to an increase in energy, so

for the ground state i needs to be constant whichwe can choose to be 0, i.e. we can choose

Ψ(r) to be real. On the other hand, solutions of Eq. (2.71) corresponding to excited states

are usually given by complex functions. It is worth noting that the ground state can be

approximated by assuming it has a certain shape (e.g. a Gaussian) depending on some free

parameters (e.g. its width), and minimising the energy with respect to these parameters.

Furthermore, the GPE itself can also be derived by considering the variations of � subject

to the constraint that the number of particles # (given by the normalisation condition

Eq. (2.62)) is fixed. In that case, one can utilise the method of Lagrange multipliers to

consider the variation of � − `2# with respect to Ψ and Ψ∗, where `2 acts as the Lagrange

multiplier.

We have referred to the lowest-energy solution of Eq. (2.71) as the ground state of

the system, which is not, however, completely accurate. In fact, it is well known that the

ground state of most physical systems interacting via interatomic potentials does not

correspond to a gas but rather to a solid. Therefore, for such systems, the BEC gas phase is

only a metastable configuration, where thermalisation is ensured by two-body collisions.

However, the theory ignores three-body collisions which, in real systems, eventually drive

the system into the solid phase. On the other hand, experiments carried out using various

atomic species have proven that the BEC phase can be realised and that it survives for

large enough times such that many relevant physical quantities can be measured. With

this caveat in mind we will refer in the following to the lowest-energy BEC state as the

ground state.

We should also reiterate that the GPE only applies if the system has a large number of

atoms (such that one can talk about Bose–Einstein condensation), the gas is dilute (such

that one can neglect interactions involving more than two atoms) and the temperature

is essentially zero (so one can neglect excitations depleting the condensate). Current
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experiments are able to create quasi-pure BECs with very small thermal fractions, so all

these conditions can be satisfied. Furthermore, we can only use it to model phenomena

taking place over distances much larger than the scattering length, as for microscopic

distances the approximations needed to derive the GPE are no longer valid.

It is also worth pointing out that in Eq. (2.68) we separated the short- and long-

range parts of the two-body potential into two different terms, which is not an obviously

correct thing to do. Furthermore, we mixed together the pseudo-potential for the short-

range interaction and the real potential for the dipole–dipole interaction (cf. Eq. (2.14)).

Furthermore, 0B itself depends on `, as explicitly noted in the equation. These points were

a topic of much debate, and it was concluded that Eq. (2.68) is correct away from shape

resonances [149–151, 153, 154, 188]. Further to this approximation, more rigorous effective

potentials have been derived, which include a velocity dependence [189].

2.3.3 Excitations and stability

A large part of the attractiveness of using dipolar atoms in ultracold gas experiments is

the effect of their anisotropic interactions on the condensate’s excited states, which exhibit

exotic properties. Let us now therefore consider excitations which are small compared

to the stationary value of the order parameter, writing the order parameter in the form

Ψ(r, C) = (Ψ0(r) + XΨ(r, C)) 4−8`2C/ℏ , (2.76)

where Ψ0(r) is the order parameter of the ground state, `2 is its chemical potential and

XΨ � Ψ0 is a small perturbation. Ψ can solve the time-dependent GPE if we look for an

oscillatory perturbation in the form

XΨ(r, C) =
∑
8

(
D8 (r)4−8l8C + E∗8 (r)48l8C

)
, (2.77)

where l8 are the (real) frequencies of the excitations described by D8 and E8 . This ansatz

can be inserted into the time-dependent GPE, Eq. (2.69). Looking for perturbations on

top of the ground state, such that Ψ0 is real, when the GPE is expanded up to first order

in XΨ and the terms are collected according to the separate frequency components 4±8l8C ,

for terms with 4−8l8C we find²³

ℏl8D8 =

(
�̂0 − `2 + �̂ + -̂

)
D8 + -̂E8 , (2.78)

²³ From here on, we drop the explicit r dependence of the operators and functions for ease of notation.
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whereas for terms with 48l8C we find

−ℏl8E8 =
(
�̂0 − `2 + �̂ + -̂

)
E8 + -̂D8 , (2.79)

where we assumed that l8 are real and �̂0 = −ℏ2∇2/2< + +trap. �̂ is called the direct

interaction term and -̂ the exchange interaction term,whose actions on a function 5 (r) are

�̂ 5 (r) = 5 (r)
∫

+eff(r′ − r)Ψ2
0 (r′) d3r′, (2.80)

-̂ 5 (r) = Ψ0(r)
∫

+eff(r′ − r)Ψ0(r′) 5 (r′) d3r′. (2.81)

Equations (2.78) and (2.79) are called the Bogoliubov–de Gennes (BdG) equations. We

can express this set of equations in matrix form as(
�̂0 − `2 + �̂ + -̂ -̂

−-̂ −�̂0 + `2 − �̂ − -̂

) (
D8

E8

)
= ℏl8

(
D8

E8

)
, (2.82)

which is equivalent to(
0 �̂0 − `2 + �̂

�̂0 − `2 + �̂ + 2-̂ 0

) (
D8 + E8
D8 − E8

)
= ℏl8

(
D8 + E8
D8 − E8

)
. (2.83)

If we take the square of the matrix and define D8 + E8 = 58 and D8 − E8 = 68 , we see(
0 �̂0 − `2 + �̂

�̂0 − `2 + �̂ + 2-̂ 0

)2 (
58

68

)
= (ℏl8)2

(
58

68

)
. (2.84)

Once we calculate the squared matrix, we find it defines a set of decoupled equations,(
�̂0 − `2 + �̂

) (
�̂0 − `2 + �̂ + 2-̂

)
58 = (ℏl8)258 , (2.85)(

�̂0 − `2 + �̂ + 2-̂
) (
�̂0 − `2 + �̂

)
68 = (ℏl8)268 . (2.86)

These equations in general need to be solved numerically. However, it is enough to solve

only one of them, after which we can use Eq. (2.84) to obtain 58 from 68 and vice versa.

Once that is done, we can obtain the originalD8 and E8 asD8 = (58+68)/2 and E8 = (58−68)/2.

The solutions of the BdG equations Eq. (2.82) have some special properties which

are worth pointing out. First of all, it can be shown that solutions must have a real

frequency (as we originally assumed), and the occurrence of a complex frequency signals

a dynamic instability of the system. Furthermore, looking at Eq. (2.77), it can be seen
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that if {D8, E8} is a solution with frequency l8 , {E∗8 , D∗8 } is an equivalent solution with

frequency −l8 . Finally, note that l = 0 is always a solution with D = UΨ0 and E = −UΨ0,

where U is a (complex) constant. In that case the order parameter becomes Ψ(r, C) =

Ψ0(r) (1 + U − U∗)4−8`2C/ℏ ≈ Ψ0(r)4−8`2C/ℏ+U−U
∗
, which is really a gauge transformation in

which the phase of the order parameter is changed by (U − U∗)/8 . This transformation is

not a physical excitation of the system. In fact, it can be shown that the energy increase

associated with the presence of these excitations is

Δ� =
∑
8

ℏl8

∫ (
|D8 |2 − |E8 |2

)
d3r . (2.87)

Therefore, the excitation energy spectrum of the condensate can be calculated by solving

the BdG equations.

We can also formulate excitations in the scope of second quantisation [190, 191],

where the Hamiltonian is given by Eq. (2.64), but we work to a higher-order expansion.

Following the classical treatment, we write the field operator as

Ψ̂(r, C) =
(
Ψ0(r) + XΨ̂(r, C)

)
4−8`2C/ℏ (2.88)

with

XΨ(r, C) =
∑
8

(
D8 (r)1̂84−8l8C + E∗8 (r)1̂

†
8
48l8C

)
, (2.89)

where 1̂†
8
(1̂8 ) are the creation (annihilation) operators associated with the excitations and

D8 , E8 and l8 are the solutions of the (classical) BdG equations. Similarly to the classical

case, Eq. (2.87), it can be shown that the change in the Hamiltonian is given by

Δ�̂ =
∑
8

ℏl8

∫ (
|D8 |2 − |E8 |2

)
d3r 1̂†

8
1̂8 (2.90)

plus a constant term arising from the commutation between 1̂†
8
and 1̂8 . As this term is the

same for the ground state and the excited state, it can be neglected. Furthermore, it is

conventional to normalise D8 and E8 according to∫ (
|D8 |2 − |E8 |2

)
d3r = 1 , (2.91)

such that Eq. (2.90) becomes

Δ�̂ =
∑
8

ℏl81̂
†
8
1̂8 . (2.92)

This implies that the system can be described by independent quasi-particles (elementary
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excitations) with energy ℏl8 . In that picture, the ground state of the system corresponds

to the vacuum of quasi-particles. Furthermore, in this normalisation, 1̂†
8
and 1̂8 satisfy the

Bose commutation relations.

Generally, the BdG equations can only be solved numerically. However, in some

simple cases, analytical solutions are possible, which provide valuable insights. Let us first

consider the case of an unconfined, spatially homogeneous dipolar gas with (number)

density = in equilibrium (i.e. Ψ0 =
√
=), where the dipoles are polarised along a certain

direction. In that case, the solutions are plane waves whose energy (normalised according

to Eq. (2.91)) reads

ℏl (k) =

√
ℏ2:2

2<

(
ℏ2:2

2<
+ 2=+̃int(k)

)
. (2.93)

Here the dependence ofl on thewave vector associatedwith the planewave, k, is made ex-

plicit (the momentum of the excitation is ℏk and : = |k|). +̃int(k) is the Fourier transform²⁴

of the interactions which, for the case of contact and dipolar interactions, is given by

+̃int(k) = 6B +
�dd

3

(
3 cos2 \k − 1

)
, (2.94)

where \k is the angle between k and the direction of the dipoles. It is worth noting that

analogously to 6B = 4cℏ20B/<, it is also customary to define 6dd = �dd/3 = 4cℏ20dd/<.

Casting the solution in terms of the scattering length 0B and the dipolar length 0dd yields

ℏl (k) =

√
ℏ2:2

2<

(
ℏ2:2

2<
+ 8cℏ2

<
=
(
0B + 0dd (3 cos2 \k − 1)

) )
. (2.95)

There are some important features which are worth noting. First of all, it can be seen that

for a purely contact-interacting gas (0dd = 0), l (k) does not depend on the direction of k

and is only real for all : if 0B ≥ 0. Specifically, if 0B < 0, small-: excitations render the gas

unstable (as they yield an imaginaryl), which is thewell-known result that a (non-dipolar)

condensate is only stable for 0B ≥ 0. Furthermore, for small : we find l ≈ :
√
6B=/<.

This relation describes sound waves with phase velocity l/: =
√
6B=/<, which are

therefore called phonon modes. On the other hand, in the large-: limit one obtains

ℏl = ℏ2:2/2<+6B=, which is the relation for a free particle. We see the transition between

the regimes occurs at ℏ2:2tr/2< ≈ 6B=. This defines a length scale called the healing length,

b =
1
:tr

=

√
ℏ2

2<6B=
. (2.96)

²⁴ The Fourier transform of a function 5 (r) is defined here as 5̃ (k) =
∫
4−8k·r 5 (r) d3r.
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This length scale emerges as an important one in a variety of phenomena, where it

characterises the size of disturbances, e.g. the size of the core of vortices.

For a dipolar gas, we see that the energy of the excitation (and so the speed of sound)

has a directional dependence (as it depends on the angle \k), and that the gas is unstable

for 0dd > 0B , or equivalently, Ydd > 1. In fact it is this relation that is used to define the

prefactors of 0dd (in Eq. (2.42)), and hence Ydd. It is also worth noting that an unconfined

purely dipolar gas (0B = 0) is never stable, as certain angles \k yield imaginary frequencies.

It is interesting to note that the most unstable situation is the case of \k = 90◦, when

the direction of the wave vector is perpendicular to the orientation of the dipoles. At

first sight, this might seem counterintuitive: as dipoles side-by-side repel each other,

one could (wrongly) conclude that the most unstable phonons should correspond to k

being parallel to the dipoles. However, for \k = 90◦ it is the wavefront that is parallel to

the dipoles—which causes a density increase along the direction of the dipoles, thereby

enhancing the attractive part of their interaction. On the other hand, for \k = 0◦ the

wavefront (and the density increase) is perpendicular to the dipoles, which enhances the

repulsive part of the interaction.

Another important case is that of a dipolar BEC tightly confined in a harmonic trap

along the polarisation direction of the dipoles (let us call this ẑ) and unconfined in the

other two directions, such that the trapping potential is

+trap(r) =
1
2
<l2

II
2 . (2.97)

If we approximate that the condensate has a Gaussian density profile along the trap-

ping direction, it can be shown that the excitation spectrum for in-plane modes (i.e. no

excitation along the tight direction) is given by [192]

ℏl (:d) =

√√√
ℏ2:2d

2<

(
ℏ2:2d

2<
+ 2=2D+̃2D(:d)

)
, (2.98)

where =2D is the areal (number) density of the gas, :d is the magnitude of the in-plane

wave vector and +̃2D is the Fourier transform of the interaction potential once the trapping

direction has been integrated out, given by

+̃2D(:d) =
6B√
2cℓI

+ 6dd√
2cℓI

�⊥

(
:dℓI√
2

)
, (2.99)

where ℓI =
√
ℏ/<lI is the harmonic oscillator length, �⊥(G) = 2 − 3

√
cG4G

2
erfc(G) and

erfc(G) = 1 − erf (G) is the complementary error function [178].
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Equation (2.98) has some striking properties which sparked experimental and theor-

etical interest. Figure 2.7(a) shows an example spectrum, demonstrating the emergence

of a plateau (a local maximum) followed by a dip (a local minimum) when Ydd is high

enough.²⁵ (This is due to the fact that +̃2D becomes negative above :dℓI ≈
√
2.) As liquid

helium exhibits a similar excitation spectrum [73–75], following the nomenclature intro-

duced by Landau, the finite-wavelength excitation minimum is called a ‘roton’ (note that

nothing is rotating in our case) whereas the preceding local maximum is called a ‘maxon’,

and the whole shape is referred to as the roton–maxon spectrum [71, 72, 193, 194]. It

is worth noting that this spectrum only develops in the Thomas–Fermi regime, where

the condensate (in the Thomas–Fermi approximation) assumes a parabolic profile [195].

(This profile can be estimated with a Gaussian, whose width is then varied to minimise

the energy of the ground state [64].) However, in the strict quasi-2D case, where the

condensate is assumed to be in the ground state of the harmonic oscillator along I, the

roton spectrum actually never develops [196]—too tight a trapping prevents the dipoles

from sampling the attractive part of the potential. As all these length scales are O(ℓI)
and the shapes are not too dissimilar, this does not qualitatively modify the physics.

The softening of (i.e. a dip developing in) the excitation spectrum at intermediate

wavelengths can be understood by looking at the form of Eq. (2.99), underlined by the

geometry of perturbations shown in Fig. 2.7(b). For small :d , the dipolar interactions are

mostly repulsive and interactions lead to a phonon mode. On the other hand, for large

:d , the dipolar interaction is mostly attractive which decreases the energy of excitations,

and if the B-wave part is weak enough compared to the dipolar part, it can create a local

minimum in the excitation spectrum at intermediate wavelengths (:rotℓI ≈ 1). However,

as the momentum of excitations is increased, the kinetic part of the spectrum overpowers

the dipolar contribution, leading to a free-particle-like solution as before.

As the particle density increases, the roton gap decreases. At a critical density the roton

gap (the energy of the roton minimum) becomes zero, and using a different approximation

to Eq. (2.98) it can be shown that:rot =
√
2/ℓI at this point [193]. As the density is increased

further, the gas collapses as the excitation energy becomes imaginary. It is interesting to

note that in this geometry even a purely dipolar gas can be stable, as the tight trapping

stabilises the gas. Moreover, the dipolar interaction can stabilise a gas even with a slightly

negative 0B , as the repulsive part of the potential compensates the attractive contact

interactions. Finally, the roton minimum also has a profound effect on the Landau critical

²⁵ What ‘high enough’ means depends on the system parameters =2D,<, lI and 0dd, but for realistic
systems the roton minimum appears when Ydd is O(1).
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Figure 2.7. Roton minimum. (a) The excitation spectrum of a dipolar gas, harmonic-
ally trapped along the polarisation direction but free in the other two, for
=2Dℓ

2
I = 300, 0dd/ℓI = 0.01, and Ydd = 1 (blue) and Ydd = 2 (green). For a

less dipolar gas the spectrum features no local (roton) minimum, but for a
more dipolar one it does. (b) A drawing showing the (exaggerated) effect of
short- and long-wavelength excitations on the density distribution. While
long-wavelength excitations mostly sample the repulsive (‘side-by-side’) part
of dipolar interactions, short-wavelength ones sample the attractive (‘head-to-
tail’) part more. This leads to a negative energy contribution, which at interme-
diate wavelengths can lead to a roton minimum. At very short wavelengths the
kinetic energy overpowers the negative contribution of the dipolar interaction,
leading to a free-particle form. Adapted from Ref. 104.

velocity, given by

E2 = min
k

(
l (k)
v̂ · k

)
(2.100)

for excitations propagating in an (infinite, uniform) superfluid in direction v̂ [73, 197]: as

the roton minimum forms, the critical velocity is determined by the decreasing gap.

While the models above were developed in infinite (or semi-infinite) systems, some

of their findings can be translated to fully trapped configurations, where the trapping

changes the excitation spectrum. However, cylindrical traps with large aspect ratios (‘pan-

cake traps’) have been formed in experiments and the rotonisation of the energy spectrum

has been demonstrated. It is this energy spectrum that motivates our investigations in

Chapter 6.
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2.3.4 Beyond-mean-field corrections

The Gross–Pitaevskii equation presented in §2.3.2 is sometimes called a mean-field ap-

proach, as we effectively replaced the individually interacting bosons with non-interacting

particles in the potential+trap++eff, arising from the trap and the average interactions with

all other bosons (the ‘mean field’). However, it is possible to work to a higher accuracy,

keeping up to quadratic terms in the Hamiltonian. This is in fact what we have already

done when describing excitations: the Hamiltonian for an unconfined gas is essentially

�̂ = �0 +
∑
8 ℏl81̂

†
8
1̂8 .

The zero-point (quantum) fluctuations of these elementary excitations, described by

1̂8 , lead to a correction to the energy of the ground state. This has first been calculated

by Lee, Huang and Yang for contact interactions [198, 199], and is therefore called the

Lee–Huang–Yang (LHY) term. For an unconfined dipolar gas it is given by [200–202]

Δ�LHY =
6B

2

# 2
0

+

128

15
√
c

√
=00

3
B &5(Ydd) , (2.101)

where &; (G) =
∫ 1

0

(
1 − G + 3GD2

);/2 dD, + is the volume the gas occupies (with cyclic

boundary conditions), #0 is the number of particles in the condensate as before and

=0 = #0/+ is their density. It is worth noting that the energy change is set by the so-called

gas parameter =003B . Furthermore, as an unconfined dipolar gas is unstable for Ydd > 1,

&5(G) becomes complex for G > 1. However, the imaginary part is small for Ydd ® 3, and

in current literature it is ignored in this regime without a complete breakdown of the

theory. One can use Eq. (2.101) to calculate the change in the chemical potential,

Δ`LHY =
mΔ�LHY

m#0
=

32

3
√
c
6B=0

√
=00

3
B &5(Ydd) , (2.102)

which can be accounted for at the mean-field level. In the local density approximation

(LDA), one assumes that the density of the gaschanges slowly enough such that the energy

shift Δ�LHY can be calculated locally. Furthermore, if one assumes that the zero-point

fluctuations of the excitations do not significantly change the number of atoms in the

condensate, i.e. #0 = # , the change in the chemical potential can be incorporated in the

Gross–Pitaevskii equation. This extended time-dependent GPE is given by

8ℏ
m

mC
Ψ(r, C) =

(
− ℏ2

2<
∇2 ++trap(r, C) + 6B |Ψ(r, C) |2 + Φdd(r, C)

+ 32

3
√
c
6B0

3/2
B &5(Ydd) |Ψ(r, C) |3

)
Ψ(r, C) , (2.103)
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while the extended time-independent version is given by

`2Ψ(r) =
(
− ℏ2

2<
∇2 ++trap(r) + 6B |Ψ(r) |2 + Φdd(r)

+ 32

3
√
c
6B0

3/2
B &5(Ydd) |Ψ(r) |3

)
Ψ(r) . (2.104)

Further extensions to the GPE are also possible, e.g. one can take into account three-body

interactions leading to losses or non-zero temperatures [203].

While the effect of the LHY term is usually negligible for mean-field-stable condens-

ates, it becomes significant when one approaches collapse. As the LHY term is repulsive

and scales more strongly with density than the interaction terms, it can prevent col-

lapse. In some cases, as the condensate collapses and its density increases, the LHY term

prevents further collapse (and a further density increase), creating a quantum droplet.
Such quantum droplets can exist even in the absence of trapping [204]. Furthermore,

if these droplets are synchronised in phase, this leads to an exotic phenomenon called

supersolidity [80, 81, 205–213]: a superfluid with spontaneous spatial density modulation.

This is a counter-intuitive state of matter that combines the dissipationless flow of a

superfluid with the crystal-like periodic density modulation of a solid [214], achieved

via the self-organisation of the excited ultracold dipolar gas into phase-synchronised

quantum droplets [76, 77, 81, 215]. However, at these large densities, three-body losses

can become significant, limiting the lifetime of quantum droplets and supersolids.

Quantum fluctuations also give rise to a depletion of the number of atoms in the

condensate, which is called quantum depletion. (This is what was neglected when deriving

the extended GPE.) For a homogeneous dipolar BEC, this is given by

X=

=0
=

8

3
√
c

√
=00

3
B&3(Ydd) , (2.105)

where X= = = −=0 is the depletion of the condensate. This is normally on the few percent

level.
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This Chapter describes the experimental apparatus, our platform for achieving

Bose–Einstein condensation of erbium and other experiments. As several steps are

required to produce a quantum-degenerate gas in a box trap, we first present a

summary of the sequence of events that take place. After this overview, we turn to

describing the individual components of our system. The principles behind their

operation are presented with the help of Refs. 133 and 216 and key implementation

details with the help of Ref. 104.

3.1 Overview of the experiment

To produce an ultracold erbium gas, we trap atoms in a vacuum chamber, shown in

Fig. 3.1, in which they go through a sequence of cooling steps as shown in Fig. 3.2. Our

vacuum system is designed with a ‘three chamber’ layout. Due to the high temperatures

needed to achieve a significant vapour pressure of erbium, a solid erbium sample is first

heated to 1150 °C in an effusion cell oven. This produces a collimated beam of hot atoms,

directed along a tube that supports a large pressure differential and therefore protects

the remaining sections from the potentially high outgassing rate of the heated parts of

53
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HV section

MOT chamber

Science cell

Figure 3.1. Vacuum system.The vacuum system consists of three separate parts. The high-
vacuum (HV) section houses the erbium oven and the viewports for transversal
cooling and probing of the atomic beam. It is separated from the remainder
of the system with a low-conductance tube to prevent the high outgassing
rate originating from the oven having an impact on the pressure in regions
where the atom cloud is cooled. The MOT chamber is the central part of the
experiment, where the main cooling steps take place (MOT and evaporative
cooling). As it lacks good optical access for the box trap and measurement
apparatus, we transport the atoms into an all-glass chamber, the ‘science cell’.
The box trap will be implemented there, along with high-resolution imaging
and other beams to probe and manipulate the atoms. Adapted from Ref. 104.

the oven. As the atoms travel towards this tube, they first pass through a 2D molasses,

operating in the transversal directions to the atom beam (this is called transversal cooling,

TC). They are then slowed down along their propagating direction using a Zeeman slower

(ZS), which has a capture velocity of ca. 350m s−1 in our setup (i.e. it can slow atoms

which enter the ZS below this speed), to less than 10m s−1. These initial stages of cooling

employ the broad 401 nm atomic transition.

The slowed atoms then arrive at the nextchamber, where they are loaded into a narrow-

line magneto–optical trap (MOT), operating on the 583 nm transition. As the atoms are

simultaneously compressed and cooled (compressed-MOT configuration, cMOT) their

temperature reduces to ca. 10 µK. They are then transferred into an optical dipole trap

(ODT), formed using a high-power, 1030 nm laser beam. The main ODT beam (ODT1)

is projected on the atoms using focus-tunable lenses, allowing the trap, formed in the

focus of the beam, to be translated along the propagation direction. Prior to transport,

an additional trapping beam (ODT2) is overlaid with the main beam, to enhance the

axial confinement of the trap, in order to perform evaporative cooling and achieve Bose–

Einstein condensation (detailed in Chapter 4).

In the next steps of the sequence, which have not been implemented yet, the atoms will

be transported to a glass (‘science’) cell, providing better optical access. Here the atoms
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Figure 3.2. Experimental sequence.
(a) After the atoms emerge from
the oven, they are slowed in the
transversal directions using an op-
tical molasses (transversal cooling,
TC). A Zeeman slower (ZS) then
slows the atoms along their direc-
tion of propagation. (b) A narrow-
line magneto–optical trap (MOT) is
loaded with atoms slowed by the
ZS. Low temperatures (ca. 10 µK)
are obtained by ramping the trap
into the compressed-MOT configur-
ation (cMOT), which also creates bet-
ter overlap with the optical dipole
trap (ODT). (c) Atoms are trans-
ferred into the ODT, formed by a
high-power 1030 nm laser projected
onto the atoms by a pair of focus-
tunable lenses. The trap can be moved
between the two experimental cham-
bers 40 cm apart bychanging the focal
length of the lens. A BEC is created
after evaporative cooling in a crossed
trap, formed by adding another ODT
beam. (d) After transport, the atoms
are transferred into the box trap made
from a hollow, tubular, repulsive beam
(372 nm) and an attractive, elliptical
sheet beam (1064 nm). This creates a
trap with a high aspect ratio and a
homogeneous in-plane trapping po-
tential. Adapted from Ref. 104.
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will be transferred into a box trap, formed by the combination of a vertical, repulsive,

hollow cylindrical beam, trapping the atoms in the horizontal direction, with a horizontal,

attractive sheet beam for vertical confinement. The repulsive potential is provided by a

372 nm laser, which is blue-detuned compared to the dominant atomic transition, whereas

the sheet beam will be provided by a (red-detuned) laser operating at 1064 nm.

3.2 Vacuum chamber

The vacuum chamber was designed to satisfy various requirements. First, we wanted

to achieve ultra-high vacuum (UHV) conditions (pressures around 10−11 mbar) in sections

of the apparatus where atoms are trapped, to ensure long atomic cloud lifetimes. Fur-

thermore, we wanted to have a high atom flux for the quick and efficient loading of the

MOT, trapping ca. 108 atoms within approximately 10 s. Finally, we wanted to have a

high degree of optical access for the laser cooling and trapping beams, and for beams

probing and manipulating the atoms in the experiments.

Our apparatus is a three-chamber system shown in Fig. 3.3. The first chamber is the

high vacuum (HV) section, housing the erbium oven¹ (emitting a somewhat collimated

beam of atoms) and transversal cooling. The atoms then move through a differential

pumping tube while being slowed by a Zeeman slower. After this, they arrive at the MOT

chamber,² where the MOT, the ODT and evaporative cooling are implemented. Finally,

they are set to be transported to a rectangular glass cell,³ providing a large degree of

optical access for future experiments using this apparatus, which is where the optical box

trap will be implemented. The MOT chamber and the glass ‘science’ cell are maintained

at ultra-high vacuum (UHV) conditions in order to achieve long atomic cloud lifetimes

(by minimising collisions with the background gas), and are therefore referred to as the

UHV section. Besides these chambers, a fourth chamber is currently being constructed

for adding potassium as a second atomic species to the experiment.

The effusion cell oven, shown in Fig. 3.4, consists of a tantalum crucible and two

heated apertures which produce a collimated atomic beam. The crucible contains 8 g of

solid erbium⁴ in small pieces, and is heated to 1150 °C to increase the vapour pressure. The

second aperture, which limits the flux of divergent atoms, has its temperature controlled

independently by a separate heater filament and is heated to 1250 °C to prevent material

build-up on the second aperture (this region is called the ‘hot lip’). A third aperture

¹ Dual Filament Cell (DFC-40-10-WK-2B-SHE) by CreaTec.
² A custom 316LN stainless steel chamber by Scanwel.
³ A 30mm× 30mm× 100mm large cell with 2.5mm thick walls, made from Borofloat glass by Precision
Glassblowing.

⁴ Distilled dendritic erbium from Alfa Aesar.
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Figure 3.3. Vacuum chambers (top view). Atoms originate from the high vacuum section
(HV) housing the erbium oven, a cube with viewports for transversal cooling
(TC) and a cross with optical access for atomic beam characterisation (BC)
and a vacuum pump. The Zeeman slower (ZS) tube maintains a pressure
differential towards the ultra-high vacuum (UHV) section and carries the
magnetic coils for operating the slower. The UHV section consists of the MOT
chamber (for trapping and cooling the atoms), the science cell (for performing
experiments) and connections for the ZS beam delivery system, the residual
gas analyser (RGA) and the potassium extension (the potassium 2D MOT).
Adapted from Ref. 104.

(a bored copper gasket) is installed after the oven to block those atoms which are too

divergent to pass through the long and narrow differential pumping tube. The oven

requires water cooling to prevent excessive heating of the surrounding chamber and to

enhance the responsiveness of the temperature control loop. Cooling water is supplied

via a closed-loop system built around a commercial water pump, and a secondary loop

with an additional pump activated via an interlock circuit as a fail-safe. A shutter is also

installed, which can block the atomic beam out of the oven. In our design, the oven is

mounted on a port aligner, which allows any tilt of the oven to be corrected.

The oven is followed by a cubic chamber with viewports for transversal cooling (TC)

and a 6-way cross with viewports for performing spectroscopy, atomic beam measure-

ments and connecting the vacuum pump and the rough pumping port to the system.

Finally, the atomic beam proceeds through the ZS differential pumping tube into the

MOT chamber.

Our system uses three combined non-evaporable getter (NEG) and ion pump ele-

ments,⁵ a choice motivated by their ability to pump all types of gases typically present

⁵ Two NEXTorr D 100-5 pumps and a NEXTorr D 300-5 by SAES Getters.
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Figure 3.4. Effusion cell oven.A set of three apertures, two of them heated and integrated
into the oven, are used to produce a collimated atomic beam.The first aperture
is near the effusion cell where solid erbium is evaporated. The hot lip houses
the second aperture, blocking the most divergent atoms, which is kept at a
higher temperature to prevent material accumulation. A third aperture (a
bored copper gasket) is mounted in front of the oven to block atoms which are
too divergent to reach the MOT chamber (ca. 96% of the total flux). Adapted
from Ref. 104.

in vacuum chambers. These pump molecular hydrogen especially efficiently, which is the

dominant background component in stainless steel chambers. Pumps are placed next to the

ZS tube, the MOTchamber and the glass cell, to provide the lowest possible pressure in the

cell. Furthermore, a differential pumping tube, being able to support pressure differentials

of at least two orders of magnitude, was installed between the oven and the other regions

of the experiment where an ultra-high vacuum is needed. This was necessary to guard

against the potentially high outgassing rates of the oven, which needs to be operated at

a high temperature (above 1000 °C) to reach sufficient vapour pressure for producing an

erbium atom beam with sufficient flux (cf. the melting point of erbium is 1529 °C).

The diameter of the tube presents a tradeoff between the possible pressure differential

(the larger the diameter, the smaller the pressure differential) and the atom flux that can

pass through the tube (the larger the diameter, the more atoms that can pass through).

Furthermore, it affects the architecture of the ZS magnetic coils, as more windings or

higher currents are required in order to produce the same field as the tube is made thicker.

The placement and design of the oven apertures also needed to be optimised. These were

achieved by numerical modelling of the pressures and the atomic beam [104], and by

relying on the experience of groups working with similar elements [126, 135]. The atomic

beam emerging from the oven was modelled using a Monte Carlo method to gain a better

understanding of how the chamber geometry affects the atom flux reaching the MOT

chamber and the efficiency of laser cooling. Pressures in the chamber were modelled

assuming the molecular flow regime, estimating the equilibrium pressure in different loc-

ations in the system taking into account the pumping speeds, background gas sources and

vacuum part conductances. As shown in Ref. 104, equilibrium pressures in the chambers



3.2. Vacuum chamber 59

can be estimated by using the leak rates and pumping speeds to draw up an equival-

ent electric circuit where pressure corresponds to voltage, molecular conductivity and

pumping speed to electric conductivity, molecular flow to electric current, volume to ca-

pacitance and the number of background molecules to charge. Besides determining the ZS

tube diameter, this helped optimising the type, number and placement of pumps, and for

our configuration the model gives 3× 10−11 mbar in the MOT chamber and 1× 10−11 mbar

in the science cell. We are confident that we achieved similar conditions in our system as

the pressure gauges of the ion pumps always maintained a reading below their detection

level of 1× 10−10 mbar. To minimise outgassing rates during usage, the apparatus was

‘baked’ (i.e. heated to a high temperature for a prolonged period of time) to increase the

effusion rate of gases trapped in the steel before pumping it down completely.⁶ For leak

checking, the MOT chamber is connected to a residual gas analyser (RGA).⁷

The operating temperature of the oven also had to be decided. Using the atom beam

model, it was chosen such that a sufficiently large atomic flux reaches the MOT chamber

without draining the solid erbium sample too quickly. Too high a flux would also be

problematic from the retro-reflected TC point of view. If the absorption rate of the photons

is too high on their way to the reflecting mirror, the reflected beam would be significantly

weaker, causing a transversal velocity bias. An aperture is therefore used to block those

atoms which diverge too heavily to reach the MOT chamber but would increase the atom

flux at the TC stage.

To implement the various laser-based methods for manipulating and probing atoms,

a number of viewports⁸ with appropriate anti-reflection coatings were installed on the

chamber to provide optical access. The HV section has four ports for transversal cooling

(for the two perpendicular retro-reflected beams) and three for probing the atomic beam.

The MOT chamber has 14 ports, six used for the MOT beams, two for imaging, two for

the Zeeman slower, two for the ODT and two spare (for observation). Furthermore, a

separate rectangular glass cell was installed in which experiments will take place, as the

large optical access leaves a large design flexibility for future experiments. (The drawback

of this setup is that as there is a pump between the glass cell and the MOT chamber to

reduce the pressure, atoms have to be transported over 40 cm between them.) Finally, the

ZS laser beam is directed into the path of the atoms by a mirror⁹ fixed to a port aligner

within the vacuum chamber, as if it was directed directly through a viewport, the atoms

⁶ Rough pumping was done with a turbo pump (Œrlikon Leybold TURBOVAC TW 70 H) backed with a
scroll pump (Œrlikon Leybold SCROLLVAC SC 5 D).

⁷ RGA100 by Stanford Research Systems.
⁸ Manufactured by Torr Scientific.
⁹ A custom, solid aluminium mirror with a UV-enhanced, polished and coated (F01 UV Enhanced
Aluminium) surface by Thorlabs.
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hitting the viewport would diminish its transparency. However, the deposition of erbium

on the mirror does not affect its performance significantly [126, 135]. This section can be

valved off in case mirror maintenance is required over the lifetime of the apparatus.

3.3 Magnetic field control

Magnetic fields are employed for a variety of purposes in our experiment. Laser cool-

ing techniques (the MOT and the ZS) require particular field profiles to create a spatially

variable detuning for the respective atomic transitions. Furthermore, homogeneous fields

are required for maintaining the spin polarisation of atoms, tuning interactions, con-

trolling the position of the MOT cloud and cancelling background fields. As erbium has a

large number of Feshbach resonances (see Fig. 2.6), any spurious noise and offsets in the

magnetic field need to be cancelled, with fields controlled ideally at the milligauss level.¹⁰

As field stability is particularly important near the science cell and the MOTchamber, com-

ponents in the immediate vicinity were manufactured using 316LN stainless steel, which

has a particularly low magnetic permeability (`A −1 ≈ 10−3). Furthermore, the breadboard

on which the experiment is assembled and the optical table on which it is mounted are

made of non-magnetic materials (aluminium and 316L stainless steel, respectively).

We implemented a range of electromagnetic coils around the vacuum chamber. The

coils installed so far are shown in Fig. 3.5 and their design details can be found in Refs. 104

and 217. The Zeeman slower system consists of six coils: three create the suitably-shaped

magnetic field (the profile and bias coils), one adjusts the field at the end of the slowing

trajectory and a pair of compensation coils cancel any residual field offsets and gradients

in the MOT chamber originating from the rest of the ZS system.

The MOT chamber is equipped with four sets of coils. The gradient coils (in anti-

Helmholtz configuration¹¹) and the bias coils (in Helmholtz configuration) control the

vertical field gradient and offset, respectively. The gradient is required for the operation

of the MOT, whereas the offset is used to control the vertical position of the MOT and the

scattering properties of the atoms (via tuning the field for exploiting Feshbach resonances).

Furthermore, a pair of lower-current offset coils (for fine-tuning) and a single-loop RF

antenna (coaxial with the other MOT coils, not shown in Fig. 3.5) are installed.

¹⁰ This will be achieved through active feedback using the compensation coils, based on the signal from
a high-resolution 3-axes magnetometer probe (Honeywell HMC2003).

¹¹ Two parallel coils are said to be in (anti-)Helmholtz configuration if the same current flows in the
coils in the same (opposite) direction, producing a uniform field (gradient).
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Figure 3.5. Electromagnetic coils. The Zeeman slower coil system includes three coils for
producing the field profile (‘profile 1’, ‘profile 2’ and ‘bias’), a coil for adjusting
the field at the end of the slower and a pair of small compensation coils which
mitigate any residual fields at the MOT position originating from the ZS. The
MOT chamber is fitted with a pair of gradient coils for cooling and two offset
coil pairs for fine and coarse field adjustments. Finally, a large compensation
cage surrounds the chamber which can be used to apply uniform fields along
all three directions. Adapted from Ref. 104.

The entire UHV section of the vacuum chamber is encapsulated in a compensation

cage, consisting of seven large rectangular coils,¹² designed for the active compensation

of magnetic field noise and for applying bias fields. As their geometry was optimised for

field uniformity, yielding a large size, they have a slow frequency response, so a smaller

(and faster) set of compensation coils for the science cell is being implemented. The coils

around the science cell (currently being installed, not shown in Fig. 3.5) include two pairs

of (large) coils to reach high-field Feshbach resonances of potassium and to rotate the

dipoles to a given direction, and three pairs of (fast) coils to rapidly rotate the magnetic

field, tuning the effective dipole strength [136].

¹² The direction along transport is addressed by three coils, as a pair of coils cannot provide a sufficiently
uniform field along the full length between the MOT chamber and the science cell.
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3.4 Laser cooling and trapping

Ultracold temperatures, required for reaching quantum degeneracy in atomic gases,

are attained via standard laser cooling methods [5] to slow and capture hot atoms emer-

ging from the oven maintained at 1150 °C, eventually producing a Bose–Einstein condens-

ate below 1 µK. These systems and techniques are presented below.

3.4.1 Laser systems and locking

Blue laser

A blue (401 nm) laser is used for the initial laser cooling steps, transversal cooling (TC)

and the Zeeman slower (ZS). This wavelength is used to address the corresponding atomic

transition, whose large scattering rate makes it ideal for these initial stages (see Table 2.2).

However, as the accompanying Doppler limit on the temperature is high (707 µK), further

cooling is performed on a narrower transition.

Light is generated by a frequency-doubled titanium–sapphire laser¹³ pumped by

a diode-pumped solid-state laser¹⁴ operating at 532 nm. The beams are delivered by a

complex optical system, detailed in Ref. 104. It is worth mentioning that care needs to be

taken to avoid high intensities on optical elements to avoid damage (which are particularly

sensitive at near-UV wavelengths), and with setting up acousto-optic modulators (AOMs)

as large powers can lead to heating-induced effects. (The AOMs are used for precise

frequency and intensity control of the beams.) It is also worth mentioning that we

encountered various issues with the 401 nm laser system, these are detailed in Ref. 104.

The frequency of the lasers employed for cooling need to be stabilised (‘locked’ to the

atomic transition they address). This can be achieved by doing spectroscopy directly on

the transition of interest using a sample of erbium (an atomic reference), or providing a

stable external frequency reference (such as an optical cavity or a stabilised secondary

laser source). In our case, there are two possibilities for an atomic reference: the beam

emerging from the erbium oven and an erbium spectroscopic lamp.¹⁵ While the former is

readily accessible and has a relatively narrow distribution of transversal velocities, the

ZS would interfere with any locking beams over the course of the experimental sequence.

Furthermore, its relatively low atomic density makes locking to the narrower, 583 nm

transition challenging. The other option consists of using a hollow cathode lamp (HCL)

¹³ A SolsTiS system with an ECD-X module (the doubler) by M Squared Lasers.
¹⁴ A 15W Sprout-G by Lighthouse Photonics.
¹⁵ Erbium vapour cells do not exist as impractically high temperatures are required for a significant
vapour to be formed (the melting point of erbium is 1529 °C).
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as a reference. This involves a pair of electrodes in an enclosure filled with a buffer gas,

typically neon or argon. The cathode is shaped as a hollow cylinder, coated with erbium

on the internal surface. When a high voltage (ca. 120 V DC for a typical current of 10mA)

is applied across the electrodes, ionised buffer gas atoms flow from the anode towards

the cathode, sputtering erbium atoms off the coated surface into the region inside the

cylinder. This provides an independent source of atoms, although with a larger velocity

spread. Additionally, for this type of spectroscopy a see-through geometry is required,

where a laser beam can be directed through the cylindrical cathode.

We currently use such anHCL¹⁶ to performmodulation transfer spectroscopy [104, 218,

219] to lock our blue laser, which is relatively simple to implement and provides a Doppler-

free, zero-offset signal which is also insensitive to the background magnetic fields. The

locking signal is narrow enough compared to the width of the blue transition, but not com-

pared to the yellow one. Over the course of building other techniques were explored (e.g.

when the HCL malfunctioned), notably modulated fluorescence spectroscopy using the

atomic beam in combination with a wavemeter, with a double feedback loop implemented

on a RedPitaya data acquisition board¹⁷ using the PyRPL software package [104, 220].

Yellow laser

A yellow (583 nm) laser system is used for the next stage of cooling, the magneto–

optical trap (MOT). This narrower atomic transition is used for the MOT due to its lower

Doppler temperature (4.5 µK).

Light is generated by a frequency-doubled diode laser with a tapered amplifier¹⁸ and

is delivered by an optical system described in Ref. 104. During the building of this system,

special care needed to be taken to avoid reflections either from the MOT towards the

laser locking system or vice versa, as these can be detrimental to the lock quality or the

MOT lifetime (the lifetime of the atoms in the MOT).

Given the narrow linewidth of the transition (186 kHz) and the fact that the laser is

principally used for cooling, achieving a robust and tight lock is especially important,

as noise in the frequency leads to the heating of the atoms and a jitter of their position.

Various techniques were tried to implement the yellow laser lock. We found that although

modulation transfer spectroscopy (MTS) yields a reasonable lock using a good-quality

hollow cathode lamp, it still leads to a considerable jitter in the MOT position. When we

had to replace our HCL, we temporarily implemented shelving spectroscopy [104, 221],

but the frequency stability was inferior even compared to the MTS locking setup.

¹⁶ Manufactured by Photron.
¹⁷ RedPitaya STEMlab 125-14.
¹⁸ DL-TA-SHG pro by Toptica.
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Therefore, an ultra-low expansion (ULE) optical cavity¹⁹ is now used as a frequency

reference, to lock the pre-doubled (1166 nm) light via the Pound–Drever–Hall (PDH)

technique [222–224]. This relies on the fact that the sign of the derivative of the intensity

of the light reflected from a cavity with respect to the light frequency changes as one

crosses the resonance. Therefore, one can establish which side of the cavity resonance

the light frequency is (and how far away it is), which provides a suitable locking signal

that can be fed back to the laser. We vary the frequency of the laser (to establish the

derivative) using an electro-optic modulator (EOM),²⁰ which is powered by an RF signal

generator.²¹ The reflected light from the cavity is captured using a photodiode²² and it is

fed into the laser locking module.²³ To minimise the dependence of the cavity length (and

therefore its frequency) on temperature (which can vary slightly in the lab), the cavity

spacer was manufactured out of a material whose coefficient of linear thermal expansion

is zero slightly above room temperature (at 37 °C). Therefore, we stabilise the cavity at this

temperature by using built-in electric heaters connected to an (external) PID controller

to control the heating power, which monitors the cavity temperature using thermistors.

IR laser

The atoms are finally loaded into an optical dipole trap (ODT) for evaporative cooling.

As the trap relies on the light being significantly red-detuned from the most prominent

atomic transition (401 nm), the trap is formed using a 45W, 1030 nm infrared (IR) fibre

laser.²⁴ Besides trapping and cooling the atoms, it is also used for transporting them into

the glass cell. Given this type of trap does not rely on light being resonant with an optical

transition, this laser does not need to be locked.

3.4.2 Light scattering force

The operation of most laser cooling schemes can be understood via the light scattering

force,²⁵ so we present a brief theoretical overview based on Ref. 216.

Let us consider a laser beam propagating in the opposite direction to that of a moving

atom, which can absorb photons from this beam if it is resonant with an atomic transition.

After the atom relaxes back to its ground state, the photon is re-emitted in a random

¹⁹ Manufactured by Stable Laser Systems.
²⁰ NIR-MPX-LN-02-00-P-P-FA-FA by iXblue.
²¹ DSG815 by Rigol.
²² PDA05CF2 by Thorlabs.
²³ DigiLock 110 by Toptica.
²⁴ ALS-IR-1030-50-I-SF by Azurlight Systems.
²⁵ A notable exception is evaporative cooling, which will be discussed in Chapter 4.
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Laser

Figure 3.6. Scattering force. For an atom moving towards a laser beam, each absorbed
photon gives the atom a kick in the direction opposite to its motion. As the
photons are scattered in random directions, this results in a force on the atom.
Figure adapted from Ref. 216.

direction. As the photons are emitted isotropically, their net effect on the momentum of

the atom is zero. However, as the photons are absorbed from the direction opposite to

the direction of propagation of the atom (the direction of propagation of the laser beam),

the atom will slow down as shown in Fig. 3.6.

The scattering rate of the photons is given by

' =
Γ

2
B

1 + B + (2X/Γ)2 , (3.1)

where Γ is the transition rate of the respective atomic transition, B = �/�sat is the saturation
parameter (� is the intensity of the laser and �sat = cℎ2Γ/3λ3 is the saturation intensity)

and X is the laser (angular) frequency detuning compared to the atomic transition. Given

the atom absorbs a photon with momentum ℏ: at each scattering event, where : = 2c/λ
is the wavenumber of the laser, the light scattering force is given by � = ℏ:'. It is worth

noting that the closer the detuning is to zero, the larger the force is. The maximum force

�max = ℏ:Γ/2 occurs as B → ∞, which corresponds to half the transition rate as half of

the population is in the excited state at this point (this follows from Einstein’s equations

for radiation interacting with a two-level atom). Furthermore, note that as the atom slows

down, the apparent frequency of the laser in the rest frame of the atom will change accord-

ing to the Doppler effect. This effect can be compensated by changing either the detuning

of the laser or the frequency of the atomic transition itself (e.g. via the Zeeman effect).
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3.4.3 Transversal cooling

In order to slow the atoms in the transversal directions to their direction of propaga-

tion, to increase the atomic flux available for the ZS and passing through it, a 2D optical

molasses [225] (transversal cooling, TC) is implemented after the oven using two ortho-

gonal, elliptical, retro-reflected laser beams addressing the 401 nm transition.

While the light scattering force can be used to slow atoms with a counter-propagating

laser beam, the difficulty in transversal cooling is that the atoms have a cylindrically

symmetric velocity distribution around their average propagation direction (the ZS tube

axis). However, if one takes two orthogonal pairs of counter-propagating laser beams, both

red-detuned compared to the atomic transition (i.e. with a negative X), one can create an

‘optical molasses’, slowing the atoms in all transverse directions (this is called transversal

cooling). Detuning the beams is critical as this means that the atoms preferentially scatter

photons from the counter-propagating laser source, as the magnitude of the apparent

detuning reduces for the counter-propagating beam and increases for the co-propagating

beam due to the Doppler effect. The resulting scattering rate is shown in Fig. 3.7. As the

Doppler-shift of the angular frequency is given by :EI for an atom propagating towards

a laser beam with velocity EI , the net force in the molasses is given by

�mol = � (X − :EI) − � (X + :EI) ≈ 4ℏ:2B
2X/Γ

(1 + (2X/Γ)2)2
EI , (3.2)

where we assumed B � 1 (which is needed to be able to treat the beams acting inde-

pendently on the atom) and :EI � Γ in the approximation. We see this is a viscous

(linear damping) force, �mol = −UEI if X < 0 (i.e. if the beam is red-detuned, matching

our physical description), hence the term ‘optical molasses’. This leads to an energy

dissipation, (
d�
dC

)
mol

= EI�mol = −UE2I . (3.3)

As we mentioned, the relaxing atom re-emits the photons in random directions. While

these random kicks lead to Δ〈EI〉 = 0, they lead to heating over time C via Δ
〈
E2I

〉
∝ E2A'C ,

where EA = ℏ:/< is the recoil velocity. The randomness (Poissonian statistics) of photon

absorption also leads to an increase in the velocity spread. These processes limit the

temperatures that can be reached (the Doppler limit), and the apparent heating for two

pairs of beams is given by [216] (
d�
dC

)
heat

=
10
3
�A' , (3.4)
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Figure 3.7. Operation of the optical molasses. Rate of absorption of photons from the
two red-detuned laser beams as a function of the atomic velocity. The atoms
always absorb more photons from the beam counter-propagating them.

where �A =<E2A /2 is the recoil energy. Heating and cooling equilibrate when (d�/dC)heat+
(d�/dC)mol = 0, which leads to

〈
E2I

〉
min =

5ℏΓ
24<

1 + (2X/Γ)2
−2X/Γ (3.5)

for B � 1. This function has a minimum at X = −Γ/2 with
〈
E2I

〉
min = 5ℏΓ/12<. Using

the equipartition theorem,<
〈
E2I

〉
/2 = :�)/2, one can associate a temperature with this

velocity,)min = 5ℏΓ/12:� . (For three pairs of beams (d�/dC)heat = 4�A', and the minimum

temperature )� = ℏΓ/2:� is called the Doppler temperature.)

Given for our transition Γ = 2c × 29.5MHz, a frequency detuning of −14.75MHz

should be optimal. Experimentally, we found optimal operation at −12.5MHz, when

the beam shape is close to the size of the atomic beam (the difference could be due to

saturation effects), leading to a threefold increase in MOT loading numbers (compared

to no TC). Optimisation of these parameters was aided by simulating their effect on the

atomic beam, and the optical delivery system and key parameters can be found in Ref. 104.

It is worth mentioning that a quarter-wave plate is inserted in the path of the beam to

avoid the retro-reflected beam interfering with itself upon reflection. Furthermore, it is

also interesting to note that as we have a problem with the anti-reflection coatings on

the TC viewports, leading to a significant loss of light intensity upon passage through

the chamber, we use slightly converging beams to re-establish the balance of forces in

the TC setup, to avoid imprinting a transversal velocity bias. The faulty viewports are set

to be replaced in the future.
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3.4.4 Zeeman slower

As we have demonstrated earlier, photons scattered off atoms can slow them down.

However, it takes time for enough photons to scatter to achieve the desired cooling. In

many cold atom experiments, including ours, atoms are sourced from a high-temperature

oven which emits a collimated beam. While the apertures (acting as collimators) ensure

that the transversal velocity of the atoms is relatively small, due to the high temperature of

the oven, the velocity of the atoms is ca. 420m s−1 on average. Therefore, while sufficient

transversal cooling can be achieved by just passing through the TC (the beam width along

the propagation direction is 17mm), it takes a considerable time (and due to their high

velocity, a considerable path length) to slow the atoms sufficiently in the axial direction.

This is especially important as the next cooling stage, the MOT, has a capture velocity of

ca. 10m s−1.

Another important aspect is that the change in the Doppler shift of the slowing atoms

(ca. 1 GHz at the initial average velocity, decreasing towards zero as the atoms stop) is

much larger than the natural linewidth (29.5MHz) of the 401 nm transition. Therefore, in

order to ensure that the laser is resonant with the atomic transition during the whole

duration of slowing, we continuously change the atomic transition frequency along the

path to compensate the changing Doppler shift as the atoms slow down. This is achieved

via the Zeeman effect, by using a suitably-shaped magnetic field �(G), hence the term

Zeeman slower [226].

To achieve a constant force on the atoms, the apparent detuning needs to be kept

constant (assuming that other parameters, like the intensity of the beam are constant along

the path, which is only an approximation due to the scattering of photons). Therefore, the

change in the Zeeman shift needs to exactly cancel the change in the Doppler shift. As in

our assumption B is constant (uniform profile, collimated beam, negligible absorption),

the work–energy principle after the (constant) scattering force � acted over a path G on a

particle with speed E0 can be written as

�G = −ℏ:'G =
1
2
<E2(G) − 1

2
<E20 , (3.6)

resulting in

E (G) = E0
√
1 − G

G0
, (3.7)

where

G0 =
<E20

2ℏ:'
=
<E20

ℏ:ΓB

(
1 + B +

(
2X
Γ

)2)
. (3.8)
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We see that G0 is the length at which the atoms stop; if they are subjected to a force beyond

this point, they will turn back. Furthermore, given a fixed G0, the capture velocity above

which atoms will not be stopped completely by the slower (up to the Doppler limit) is E0.

The laser frequency in the rest frame of the atoms can be written as l + :E , where

the laser frequency in the lab frame is l and the Doppler shift is :E . Furthermore, with

the Zeeman shift taken into account, the frequency of the atomic transition can be

written as l0 + `/�/ℏ, where l0 is the frequency of the unperturbed atomic transition

and `/ =
(
<464 −<666

)
`� is the Zeeman factor given by the properties of the two

states involved in the atomic transition (see Eq. (2.9)). Therefore, the total apparent

detuning, which we aim to keep constant along the length of the slower, is given by

X = (l + :E) − (l0 + `/�/ℏ) = X0 + :E − `/�/ℏ, where X0 = l −l0 is the laser detuning

without any Zeeman shifts for an atom at rest in the lab frame. Therefore, the magnetic

field profile of an ideal Zeeman slower is given by

�(G) = ℏ

`/
(X0 − X + :E (G)) =

ℏ

`/

(
X0 − X + :E0

√
1 − G

G0

)
. (3.9)

This magnetic field can be created with a suitable set of coils. In our system, we use one

coil to generate the constant offset (the ‘bias’) and two to generate the spatially varying

part (the ‘profile’).

When designing a realistic Zeeman slower, a number of other considerations need to

be taken into account [104]. First, the total detuning X should be negative, for the faster

atoms to encounter a larger force and the slower atoms to feel a smaller force, leading

to a robust operation. However, the larger the detuning, the larger the slowing path G0
is, so a sensible compromise is needed. Furthermore, as the end of the Zeeman slower

is not at the centre of the MOT and the light can turn atoms back after they leave the

ZS, it is designed such that the atoms are not stalled completely. (The field at the end

of the ZS can be adjusted with a separate ‘end’ coil, providing a kick at the end, and

a pair of coils are used to cancel the field of the Zeeman slower at the MOT.) The exit

velocity needs to be chosen such that the MOT can capture the atoms, but it is not so

small that the atoms eventually turn back or that the atom beam expands so significantly

due to the remaining transversal velocity component that many atoms hit the wall of the

ZS tube or evade the MOT upon exit. Another consideration that is worth taking into

account is that the magnitude of the magnetic field should be minimised in the ZS (to

avoid large coils or high currents), so the bias needs to be chosen suitably. When the bias

is negative and a zero-crossing of �(G) occurs during the slowing path (as the profile is

always positive), the ZS is said to be in the ‘spin-flip’ configuration (which is the case
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in our system). While this is advantageous from the coils’ point of view, care needs to

be taken with the field profile as the atoms can become magnetically depolarised in the

vicinity of the zero-crossing. The existence of this zero-crossing is also the reason behind

using two coils for creating the field profile, one on each side of the crossing, to create

fields with opposite directions.

In our case, the Zeeman slower has a length of 42 cm and its capture velocity is ca.

350m s−1. It slows atoms down to ca. 10m s−1 with a slow-atom flux of 5× 107 s−1.

3.4.5 Magneto–optical trap

After the atoms exit the Zeeman slower, their velocity is on the order of 10m s−1.

Further cooling of the atoms takes place using the 583 nm transition due to its narrower

linewidth leading to a lower Doppler temperature ()� = 4.5 µK). Furthermore, as the

forces acting in the TC and the ZS depend only on the velocity of the atoms but not

on their position, they provide slowing but not trapping. Therefore, a magneto–optical

trap (MOT) [227] is implemented on this transition, which also provides trapping besides

cooling. This is important as the stable spatial manipulation of the cloud is necessary to

optimise loading into the optical dipole trap, where evaporative cooling (the final cooling

stage) takes place. Due to the high scattering rates involved, the MOT cloud is visible to

the naked eye.

The MOT can be thought of as an enhancement of the combination of the optical

molasses and the Zeeman slower. Compared to the ZS, the magnetic field here is used

not to provide a constant detuning of the atomic transition but a position-dependent one,

leading to a position-dependent light scattering force.

The operation of the MOT is shown in Fig. 3.8. Its basis is a 6-beam optical molasses

(three counter-propagating pairs of beams with all pairs orthogonal to each other), and the

operation principle is similar: the atoms preferentially absorb photons from their direction

of propagation, i.e. from the beam propagating towards them. However, to achieve spatial

trapping, we also need this to happen not only based on their velocity but also on their

position, i.e. we need the atoms to always be pushed towards the intersection of the

beams, the centre of the trap. This can be achieved by using a magnetic field, which acts

on the different transitions differently. In our case, the 583 nm light addresses transitions

from the ground state
��� ,< �

〉
= |6,−6〉 to the excited states |7,−7〉, |7,−6〉 and |7,−5〉,

which require a photon to be absorbed with polarisation f−, c and f+, respectively.²⁶

The Zeeman shift of the transitions is given by
(
<464 −<666

)
`��/ℏ as earlier, where the

²⁶ This can be seen by recalling that the angular momentum projection is �I = −ℏ for a f−-polarised
photon, �I = 0 for a c-polarised photon and �I = +ℏ for a f+-polarised one.
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Figure 3.8. Operation of the MOT. Atoms are excited from the ground state
��� ,< �

〉
=

|0, 0〉 to the excited states
��� ′,< � ′

〉
= |1,−1〉 (red), |1, 0〉 (black) and |1, 1〉 (blue).

Due to the magnetic field gradient and the red-detuned laser beams, atoms
at G < 0 are more likely to absorb photons from the f+-polarised beam (1),
propagating in the +G direction, while atoms at G > 0 are more likely to scatter
from the f−-polarised beam (2). This leads to a force with spatial dependence,
confining the atoms near the origin.The same argument can be adopted for the
ground state |6,−6〉 and the excited states |7,−7〉, |7,−6〉 and |7,−5〉. Figure
adapted from Ref. 217.

Landé 6-factor is given by Eq. (2.5) for the ground state and by Eq. (2.7) for the excited

states. Given the 6-factors of the excited states are different, the respective transitions

will be detuned differently at the same magnetic field. Furthermore, for our case the

Zeeman factors of the f− and f+ transitions have an opposite sign, so the detunings of

the different transitions will change in the opposite sense.

Let us now focus on the dynamics in one spatial direction. A linearly changing

magnetic field (a constant magnetic field gradient) with � = 0 at the trap centre will

mean that a given transition will match a given detuning only on one side of the trap

(the other transition will be resonant on the opposite side of the trap), given the � field is

the opposite on the two sides of the trap and the transitions change with the field in the

opposite sense. If we choose one of the laser beams to be f−-polarised and the other to be

f+ (both red-detuned compared to � = 0), this means that the atoms will absorb photons

preferentially from opposing beams on each side of the trap (from the one corresponding

to the transition which is resonant, as the transition corresponding to the opposite beam

will be far-detuned and hence will scatter fewer photons), leading to spatial trapping.

While we only considered one direction for simplicity so far, the argument can be
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extended to all three dimensions. In the most common configuration (including in our

implementation), one pair of beams is vertical (the I-axis) and the others are horizontal,

and the magnetic field gradient (generated using a pair of coils in the anti-Helmholtz

configuration) is that of a quadrupole field,

B(G,~, I) = �
(
−1
2
x − 1

2
y + z

)
, (3.10)

where� = |m�/mI | is the magnitude of the field gradient. Without going into details, one

can qualitatively argue some important effects. The size and shape of the MOT cloud

can be estimated based on the properties of the surface on which the laser is resonant

with a transition. In our case this is an ellipsoid, and as it can be seen from Fig. 3.8, if the

magnitude of the detuning is decreased, the surface shrinks, so the cloud is compressed.

Furthermore, it can be seen that if a constant offset field (a ‘bias’) is applied, the position

of the MOT cloud will be shifted (as the centre of the trap is defined by the position where

the field is zero).

The description of a narrow-line MOT (where the frequency corresponding to the

single-photon recoil energy is on the order of the linewidth) is somewhat more involved

than the general argument above [228, 229]. As in our case the MOT is operated in the

regime where X � Γ, besides the light scattering force, the magnetic force and gravity

are also significant. The force on a magnetic dipole in a non-uniform field is given by

F = ∇(- · B) [230]. Given the magnetic dipole moment of our atoms is - =<666`�B̂ (cf.

Eq. (2.4)), the force in the ground state (<6 = −6) is given by

F = −`∇|B| , (3.11)

where ` =
��<666`�

��. Since the atoms are in a high-field-seeking state, this force is anti-

trapping. Along the vertical direction, in the region below the centre of the MOT, this

leads to an effective gravitational force of

<6′ =<6 +�` , (3.12)

where 6 (6′) is the (effective) gravitational acceleration and< is the mass of the atoms

as before. This leads to a sagging of the MOT under gravity, as the light scattering force

needs to balance the magnetic and gravitational forces (i.e. the vertical position of the

MOT can be controlled via the light intensity and the field gradient besides the field

offset). Using a simple model [231], one can take the cloud to only interact with the beam

pointing upwards, which has the benefit of pumping (spin-polarising) the atoms to the
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ground state (< � = −6) if the beam is f−-polarised (i.e. the vertical magnetic field gradient

is negative). Furthermore, it can be shown that the equilibrium temperature of the MOT

is independent of the detuning to first approximation and that it increases with B [228].

With all these in mind, MOT loading takes place in three stages [104]. First, the ZS

and the MOT beams are switched on at high intensity (for a suitably high MOT capture

velocity), with the MOT light strongly red-detuned (such that the atoms sag in the MOT

for spin-polarisation and to avoid interaction with the ZS beam). We typically wait for 15 s

for the MOT to load. Once loading is completed, the ZS light and coils are turned off, and

the MOT is held in place for a hold time of 1 s (in which the cloud equilibrates from the per-

turbation caused by the varying magnetic fields upon the turn-off of the ZS coils). Finally,

the magnitude of the MOT light detuning and intensity are decreased in parallel to cool

and compress the MOT, and a magnetic field bias is introduced vertically to raise the cloud

to the height of the optical dipole trap beam. Details of this procedure and the optical sys-

tem can be found in Ref. 104, but it is worth emphasising that the stability of MOT loading

and cMOT (compressed MOT) position depends critically on the stability of the frequency

and the polarisation of the laser beams. We typically achieve 108 atoms in the cMOT at

a temperature of 10 µK (measured with the time-of-flight technique presented in §3.6.2).

The lifetime of the MOT was measured to be 40 s, which is sufficiently longer than the

period of the experimental cycle (ca. 20 s) and confirms we have a suitably high vacuum.

3.4.6 Optical dipole trap

The final stage of cooling makes use of the optical dipole trap (ODT) [43, 232], which

relies on another aspect of the atom–light interaction, the AC Stark effect. As a simple but

intuitive model, let us consider a neutral atom placed in an oscillating electric field E(r, C).
In this field, the centres of mass of the positive and negative charges are periodically

separated by the field (they are dragged in opposite directions), which means that an

oscillating electric dipole p(r, C) is induced,

p(r, C) = UE(r, C) , (3.13)

where U is called the (complex) polarisability of the atom. Writing the dipole moment

this way is justified by the fact that the wavelength of the laser is usually much larger

than the atomic size. The atom can then be treated as a dipole which interacts with the

driving field, with the interaction energy given by

*dip(r) = −1
2
〈p(r, C) · E(r, C)〉 = − 1

2Y02
Re(U)� (r) , (3.14)
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where 2 is the speed of light and we used the fact that the field intensity can be written as

� (r) = Y02 |E(r) |2/2 where E(r) is the field amplitude. The averaging is justified by the fact

that the field oscillates much faster than the frequencies of atomic motion. Furthermore,

it is worth noting that the factor of 1/2 is necessary as the dipole is an induced one, not a

stationary one. Given the force on (any) electric dipole is F = (p · ∇)E [230], it can be

shown that the interaction energy *dip = −
∫
F · dr = −p · E/2 for p ∝ E (the constant

would be different for a different relationship between the field and the induced dipole).

When a dipole is driven below resonance (the field is red-detuned), it oscillates in

phase with the field, but when it is driven above resonance (the field is blue-detuned),

it oscillates out of phase. Below (above) resonance the interaction energy is negative

(positive), so the atom is attracted to (repelled from) the region with the highest electric

field intensity. A trap will be created for negative interaction energies, where the atoms

are drawn towards the highest intensity (the focus of a Gaussian laser beam).

This can also be understood in a slightly more rigorous treatment. In the ‘dressed-state’

picture, the eigenstates of the atoms in the electric field are the unperturbed eigenstates

mixed with small proportions of other states. All the states corresponding to transitions

for which the laser is blue-detuned (red-detuned) increase (decrease) the energy of the

atom. For a two-level system, if the light is far-detuned compared to a transition, the

energy shift can be written as [216]

Δ� = *dip ≈
ℏΓ2

8X
B = − 1

2Y02
Re(U)� (r) . (3.15)

The atoms also scatter the photons, which leads to a momentum transfer resulting in

heating and atom loss. The scattering rate (Eq. (3.1)) for a far-detuned field is given by

' ≈ Γ3

8X2
B . (3.16)

We see that the interaction energy is *dip ∝ �/X , while the scattering rate is ' ∝ �/X2, so
scattering (heating) is suppressed for large detunings given the same trap depth.

In general, the polarisability U has a tensorial character and depends on the atomic spe-

cies, the light frequency and the angles of polarisation \? and the propagation direction \:
of the electric field with respect to the quantisation axis (the direction of the magnetic

field �). This is due to the fact that it accounts for the effects from all transitions, some

of which are polarisation-dependent and are associated with anisotropic orbitals. The

polarisability can be separated into three components (called scalar, vector and tensor),
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Figure 3.9. Polarisability of erbium. For the horizontal ODT beam, \: = \? = 90◦ and
this configuration is shown in the figure, using data from Ref. 234. We see
that the many available transitions induce resonances in the polarisability;
the finite peak heights associated with some transitions are due to the finite
sampling rate of λ in the figure. The polarisability is highlighted for 1030 nm
(U = 178 a.u., i.e. a trap is formed at this wavelength, used for evaporation
and transport), and for 372 nm (U = −779 a.u., i.e. the potential is repulsive at
this wavelength, used for the radial ‘wall’ of the optical box trap). Note that
the horizontal axis scaling is reciprocal (goes as 1/λ). Adapted from Ref. 104.

and can be written as [65]

U (l) = Uscal(l) + E cos\:
< �

2�
Uvect(l) +

3<2
�
− � (� + 1)

� (2� − 1)
3 cos2 \? − 1

2
Utens(l) , (3.17)

where
��� ,< �

〉
is the (electronic) quantum state of the atom (|6,−6〉 for the ground state of

erbium) and E is the ellipticity of the light polarisation. The polarisability has been calcu-

lated andmeasured²⁷ at different wavelengths for erbium [233, 234] and is shown in Fig. 3.9

for \? = \: = 90◦. From the figure it is clear that an optical dipole trap is created for λ =

1030 nm, whereas a repulsive optical potential can be set up using light close to 372 nm.

To proceed with characterising the trap, we need to consider the intensity distribu-

tion of the light. In most cases a Gaussian beam is used for trapping, whose intensity

distribution is given by

� (G,~, I) = 2%
cFG (I)F~ (I)

4
−2

(
G2

F2
G (I )

+ ~2

F2
~ (I )

)
, (3.18)

²⁷ The atomic unit (a.u.) of polarisability is defined as 1 a.u. = 4cY0030 = 1.65 × 10−41 C2 m2 J−1.
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where % is the total power in the beam andFG (I) andF~ (I) are the beam radii (the beam

propagates in the I-direction). For atomic clouds which are small compared to the size of

the laser beam, we can use a harmonic approximation of the dipole potential (Eq. (3.14))

to extract the trap frequencies, which leads to

*dip ≈ *dip(0) +
1
2

m2*dip

mG2

�����
0

+ 1
2

m2*dip

m~2

�����
0

+ 1
2

m2*dip

mI2

�����
0

(3.19)

= − 1
2Y02

Re(U) 2%
cFGF~

(
1 − 2G2

F2
G

− 2~2

F2
~

− 1
2
I2

(
1

I2
'G

+ 1

I2
'~

))
, (3.20)

whereFG andF~ are the beam waists in the G and ~ direction, respectively, and I'G and

I'~ are the respective Rayleigh ranges.²⁸ We see the trap depth is given by

*0 = *dip(0) = − 1
2Y02

Re(U) 2%
cFGF~

, (3.21)

which is sometimes expressed as a temperature, )0 = *0/:� . By comparing the trapping

potential (Eq. (3.20)) to the potential of a simple harmonic oscillator,<(l2
GG

2 + l2
~~

2 +
l2
II

2)/2, the trapping frequencies can be extracted as

lG =

√
4*0

<F2
G

=

√
4U%

<Y02cF
3
GF~

, (3.22)

l~ =

√
4*0

<F2
~

=

√
4U%

<Y02cFGF
3
~

, (3.23)

lI =

√
2*0

<I2
'eff

=

√
U%λ2

(
F4
G +F4

~

)
<Y02c

3F5
GF

5
~

, (3.24)

where

I'eff =
I'GI'~√

1
2

(
I2
'G

+ I2
'~

) =

√
2

F4
G +F4

~

F2
GF

2
~c

λ
(3.25)

is the effective Rayleigh range.

Besides changing the size and the power of the ODT beam directly, the trap size

and depth can also be changed by periodically moving (dithering) the trapping beam.

If the beam is dithered at a frequency much higher than the trapping frequency, the

atoms are not able to follow the motion of the light and instead experience an effective,

time-averaged potential. Creating such an elongated trap is useful as a larger overlap

²⁸ The Rayleigh range is defined as I' = cF2
0/λ for a beam with waistF0.
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with the MOT cloud can be achieved, enabling a higher ODT loading efficiency.

If the position of the beam is given by the periodic functions G� (C), ~� (C) with period) ,

the time-averaged potential is given by

* (G,~) = *0

)

∫ )

0
4
−
(
2(G� (C )−G )2

F2
G

+ 2(~� (C )−~)2

F2
~

)
dC , (3.26)

where*0 is the undithered trap depth andFG,~ are the undithered beam waists. To match

the previous configuration, we would like the effective potential to be a Gaussian widened

in one direction (let this be G , without loss of generality)—this means setting* (G,~) to
be a Gaussian with F ′

G = 2FG . Given the total power is the same in the dithered beam,

from Eq. (3.21) we see* ′
0 = *0/2 . Equation (3.26) can be solved in this case to yield²⁹

G� (C) =

√
22−1
1 FG erf

−1 ( 4C
)
− 1

)
if 0 ≤ C ≤ )

2 ,√
22−1
1 FG erf

−1 (3 − 4C
)

)
if )2 ≤ C ≤ ) ,

(3.27)

~� (C) = 0. (3.28)

However, this dithering function diverges at C = 0 and ) /2. Ref. 235 shows that it can be

approximated as

G� (C) =

22FG

c
arcsin

( 4C
)
− 1

)
if 0 ≤ C ≤ )

2 ,

−22FG

c
arcsin

( 4C
)
− 3

)
if )2 ≤ C ≤ ) ,

(3.29)

~� (C) = 0. (3.30)

A plot of the dithering functions and the resulting potentials can be seen in Fig. 3.10. While

Eq. (3.26) cannot be solved analytically for arbitrary* (G,~), it can be solved numerically

to yield an arbitrary trap, e.g. one which is exactly harmonic towards its centre portion.

In our system, an acousto-optic modulator³⁰ (AOM) is used to dither the beam, which

can also be used to control the laser power. An AOM works by inducing a sound wave

travelling through a crystal, which periodically alters the refractive index of the medium.

This acts as a layered structure from which light can be reflected into Bragg peaks. The

first-order deflection angle of the AOM is governed by the Bragg condition

2
EB

5AOM
sin\3 = λ , (3.31)

²⁹ I thank Tevž Lotrič for pointing out this solution.
³⁰ AOMO 3080-199 by Gooch & Housego.
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Figure 3.10. Beam dithering. (a)The dithering functions described in Eqs. (3.27) and (3.29)
(blue and green, respectively) with 2 = 3. We see the functions are nearly
identical and an arcsin function can be used to generate an approximately
Gaussian potential with an increased waist. (b)The undithered potential (red)
compared to the potential dithered via Eq. (3.29) (green) and via Eq. (3.27)
(blue), the latter yielding the target Gaussian potential with waist 3FG . The
arcsin-dithered potential is also close to Gaussian.

where \3 is the deflection angle, λ is the wavelength of the light, 5AOM is the driving

frequency and EB is the speed of sound. Therefore, changing the driving frequency of

the AOM affects the deflection angle and moves the beam slightly, which means that

modulating the AOM frequency is an effective way of dithering the beam. It can also

be shown that the diffraction efficiency depends on the intensity of the sound, which

means that changing the sound intensity changes the diffracted laser intensity. This is

useful in our case as changing the laser intensity using the laser itself changes other beam

properties (e.g. its waist size) as well. However, the AOM has a finite bandwidth and the

power in the diffracted beam depends on the angle of diffraction, which can distort the

function we use to dither the beam.

Details of the optical system can be found in Ref. 104, andwe are able to load 25% of our

atoms from the cMOT into the ODT, where we use the horizontal dithering of the beam

to achieve a better spatial overlap. It is worth mentioning that due to the low trapping

frequency in the propagation direction of the horizontal ODT beam, we superimpose

another (roughly orthogonal) ODT beam for evaporation, creating a ‘crossed trap’.

Optical trapping will also be used to realise the box trap in the science cell. For that

purpose, the trapping characteristics of a red-detuned, horizontal sheet beam (confining

the atoms in the vertical direction) will be combined with a blue-detuned, vertical tube

beam (repelling the atoms from the wall, thereby confining them in the intersection

of the sheet beam and the tube). The sheet beam will be realised using a 1064 nm fibre
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laser,³¹ whereas the walls will be realised using a frequency-doubled titanium–sapphire

laser³² with an output of 372 nm, pumped by a diode-pumped solid-state laser³³ operating

at 532 nm. As with the ODT, neither of these lasers need locking as we only need their

detunings to be large.

3.5 Transport

In our system, a glass cell will be used to conduct experiments due to the better optical

access it provides. Therefore, it is necessary to transport the atomic cloud over 40 cm.

Sometimes this is done with overlapping magnetic coils [236] or by physically moving a

coil pair [237, 238], but the state we use is not magnetically trappable. A different method

is all-optical transport which can be performed by displacing the focus of a beam which

the atoms are trapped in (an optical dipole trap). This can be achieved with the focusing

lens mounted on an air-bearing translation stage [239], but it comes with the drawback

of placing a cumbersome system close to the vacuum chamber, which bears the risk of

transferring vibrations to the dipole trap or the optical table.

An alternative all-optical approach was demonstrated in Ref. 240, which involves

using focus-tunable lenses: lenses that change their focal lengths in response to an applied

current. As atoms are trapped in the focal point of the beam (in the ODT), they can be

moved from the MOT chamber to the science cell by tuning the focal length of the lenses

(an optical tweezer). As this eliminates the risk of transferring vibrations, this solution is

being implemented in our system.

To transport the atoms, we need to translate the focal point of the trapping beam

along the optical axis. In principle, a focus displacement can be achieved by using a single

tunable lens focusing a collimated beam. However, increasing the focal length increases

the waist size as well, thereby changing the trap frequencies and depth during transport.

The system presented in Fig. 3.11 provides uniform trapping conditions over the full

transport distance, which is preferable as only strong confinement and a large trap depth

allow for fast transport. Figure 3.11(a) shows two beams which are focused behind the

static lens ! with focal length 5 at distances 5 (position �) and 25 (position �). As the

waist size of the beams are equal if their divergences are, this requires beam diameters 3

and 23 at !, respectively (resulting in the same divergence \ = 3/5 for both). The beam

focused at point � must be collimated before the lens, and it can be shown that the beam

focused at point � must have the same divergence \ before passing !. Therefore, the two

³¹ ALS-IR-1064-10-I-CP-SF by Azurlight Systems.
³² A SolsTiS system with an ECD-X module (the doubler) by M Squared Lasers.
³³ An 8W Sprout-G by Lighthouse Photonics.
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Figure 3.11. All-optical atom transport. (a) Transport at constant beam waist over a
distance 5 . If the separation between the tunable lens )2 and the static lens !
equals the focal length 5 of the latter, the trap can be translated by tuning
52, while maintaining the same divergence \ = 3/5 and thus the same waist
size between points � and �. (b) Independent control over the waist size and
position of the focus. Replacing the first lens with the tunable lens )1 allows
changing the beam size at )2, resulting in a different divergence behind !.
Illustration adapted from Ref. 240.

beams have the same size at a distance 5 before !, and placing a lens (let us call it )2)

with a tunable focus 52 at this position allows the continuous transformation of one beam

into the other, resulting in a moving focus with a constant waist.

This can also be shown using geometrical optics. By using the thin lens equation,

1/52 = 1/C2 + 1/:2, and the fact that the incoming beam is collimated (so the object

distance is C2 = ∞), we see the distance of the image created by )2 is :2 = 52. Therefore, if

the incoming beam diameter is 3 , the beam divergence after )2 is \2 = 3/:2 = 3/52. For
the other lens, the object distance will be 5 − 52, so using the thin lens equation again,

1/5 = 1/(5 − 52) + 1/G0, we find the image distance is G0 = 5 (52 − 5 )/52. The diameter at

5 is 3 5 = \2(5 − 52), so the divergence after 5 is \ = 3 5 /G0 = −3/5 , which is independent

of 52 as expected.

The system as originally proposed [240] used a focus-tunable lens (FTL) which limited

52 > 0. Therefore, the divergence could only be reduced and the beam had to be focused

before crossing )2, as can be seen in Fig. 3.11(a), achieved by a static lens placed in front

of )2, which in turn defines the waist size behind !. In our case, the tunable lenses³⁴ have

a larger range and could also be set to produce 52 < 0. This means that the beam does

³⁴ EL-16-40-TC-VIS-5D from Optotune.
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not have to be focused before )2 in our case, which is useful to avoid power fluctuations

caused by dust particles traversing the focal point. However, the same principle applies

as in the original system, and in order to gain independent control over both the position

and waist size of the focus, another tunable lens ()1) is placed in front of )2, as shown in

the extended system in Fig. 3.11(b).

The system was modelled in Mathematica using ray transfer matrix analysis [241] to

examine how the laser beam propagates through the system. This enables us to compute

the waist size and the focus position for any focal length combination (51, 52). Ray transfer

matrix analysis (also known as ABCD matrix analysis) is a type of ray tracing technique

used in the design of some optical systems. It involves the construction of a ray transfer

matrix which describes the optical system; tracing the light path through the system can

then be performed by multiplying this matrix with a vector representing the light ray.

In the thin lens approximation, ray propagation over free space of length ; and

refraction at a lens with focal length 5 can be described by the ray transfer matrices

P; =
(
1 ;

0 1

)
, L5 =

(
1 0

−1/5 1

)
. (3.32)

The full system transfer matrix can then be written as

SG = PGL5 P5 L52P;L51 , (3.33)

where G is the distance after ! and ; is the distance between)1 and)2. Let us now assume a

Gaussian beamwith waist sizeF , waist position I0 andwavelength λ propagating through

the system, along the optical axis (the I-direction). The complex beam parameter @(I) is
defined as

1
@(I) =

1
'(I) − 8

λ

cF2(I) , (3.34)

where '(I) is the radius of curvature of the beam andF (I) is the beam radius. From this,

we see that the beam radius is given by

F (I) =

√
λ

c Im(−1/@(I)) , (3.35)

and the focus position is given by the condition

Re(@(I)) = 0 . (3.36)

Now, assuming the incoming beam is collimated at )1 with waistF , which we choose to
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be the origin of our coordinate-system (i.e. I0 = 0 and so '(0) = ∞), the incoming beam

parameter is

@0 = 8
cF2

λ
. (3.37)

We then use the ray transfer equation

@C =
�@0 + �
�@0 + �

, (3.38)

where the transfer matrix of the system is written as SG =
(
� �
� �

)
, which acts on the light

vector proportional to
( @0
1

)
. In our case we find

@C (G) = G − 5 + 5 2
(
1
52

+ cF2 + 8 51λ
(51 − ;)cF2 − 8 51;λ

)
. (3.39)

We can use this to find the waist size at the trap,F0, and the focus position G0, using

Eqs. (3.35) and (3.36), respectively, givenF0 = F (G0). This yields

F0 =
5 |51 |Fλ√

(51 − ;)2(cF2)2 + (51λ;)2
, (3.40)

G0 = 5 − 5 2
(
1
52

+
(51 − ;) (cF2)2 − 5 21 λ2;
(51 − ;)2(cF2)2 + (51λ;)2

)
. (3.41)

We seeF0 is independent of 52, so it stays constant throughout the transport as expected.

Also note that apart from the last term in G0, which is a small Gaussian-ray correction,

it is the same as we found from geometrical optics. While this system has not been

implemented yet, some design considerations can be found in Ref. 104.

An interesting question that needs to be investigated is the dynamics of transport, i.e.

G0(C). We want the atoms transported as fast as possible (to avoid atom loss and heating

due to background processes), but too fast a transport can also lead to atom loss (atoms

not being able to follow the trap) and heating (atoms sloshing in the trap). This question

has been addressed in Refs. 242 and 243, where it was found via utilising dynamical

invariants (the so-called Lewis–Riesenfeld invariants) that G0(C) needs to be chosen both

classically and quantum mechanically such that

G0(C) = @2 (C) +
1

l2
I

¥@2 (C) , (3.42)

where @2 (C) is an arbitrary function that satisfies @2 (0) = ¤@2 (0) = ¥@2 (0) = ¤@2 () ) = ¥@2 () ) =
0 and @2 () ) = 3 , with ) the total time and 3 the total distance of transport. Given the six
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constraints, an obvious candidate for @2 is a 5ᵗʰ-order polynomial,

@2 (C)
3

= 10
( C
)

)3
− 15

( C
)

)4
+ 6

( C
)

)5
. (3.43)

Another option is using a Fourier series with an added linear term,

@2 (C)
3

=
C

)
− 2
3c

sin
(
2c
C

)

)
− 1
12c

sin
(
4c
C

)

)
. (3.44)

It is worth noting that while the functional forms of these functions are different, they

both define S-shaped G0(C) curves. To test their behaviour, a simulation is being set up

using the AtomECS package [244]; early results indicate that G0(C) defined via these

functions indeed outperform simpler (e.g. ‘bang-bang’—a kick at the beginning and

the end of transport—or constant acceleration) ramps. Furthermore, it seems that G0(C)
defined via the Fourier series is more robust against uncertainties in lI (i.e. ultimately

the beam waists) than that defined by the 5ᵗʰ-order polynomial.

3.6 Data acquisition

3.6.1 Control system

As we have seen before, operating the experiment requires precise control of various

laser frequencies, magnetic fields, intensities etc. Our magnetic coils are attached to vari-

able power supplies, whereas the lasers are routed through shutters and AOMs to control

their frequencies and intensities. The control and time-synchronisation of the experiment

are realised by using a controller system with 40 analogue and 32 digital output channels,

all independent from each other.³⁵ These can be controlled from a computer using the

Cicero Word Generator [245], a software which generates the experimental sequence

and sends it to the hardware. The system also relies on an FPGA chip³⁶ which provides a

variable-frequency clock signal for the output cards to precisely time the sequence.

3.6.2 Imaging

Data in ultracold atom experiments is taken via taking images of the atoms, as the

(evolution of the) cloud shape contains important information. Imaging is done via two

³⁵ Three controller cards are mounted in a PXIe-1082 (8-slot PXI Express) chassis, the PXI-6733 (8-
channel, 16-bit analogue output), the PXIe-6738 (32-channel, 16-bit analogue output) and the PXIe-6536
(32-channel digital output), all by National Instruments.

³⁶ XEM6001 from Opal Kelly. As the Cicero Word Generator was originally designed to work with the
XEM3001, a minor code modification was necessary.
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techniques, absorption imaging and fluorescence imaging, which look at the light absorbed

and scattered by the atoms, respectively. To maximise these effects, the 401 nm (blue)

transition is used, due to its large transition rate. To take the images, a CMOS camera³⁷ is

used, triggered by a TTL signal from the digital control card. The images are then saved

into a database with the experimental parameters used in the sequence.

Image processing can be automated with the assistance of a neural network which

creates region-of-interest boxes (ROIs) centred on our clouds [106]. (One needs to select

bounding (ROI) boxes around the cloud to be fitted to speed up the fitting process and

to fit only the cloud of interest.) Images are then fitted with a Gaussian function using

the ROI as seed via the jax library [246]. Furthermore, the two steps can also be unified,

training a neural network to directly extract cloud properties [247].

To achieve automatic ROI placement, we trained a neural network using data collected

in the lab (including by me, among others) to produce the ROI boxes. Besides automating

the fitting process, we found that this method performed better than conventional image

fitting methods and yielded significant speed gains. Details of the training of the neural

network is presented in §3.7.

Besides the atoms, sometimes the beam itself needs to be imaged for characterisation

purposes. This was done by directing beams on the camera directly, or via neutral-

density (ND) filters if the intensity was too high. However, imaging beams with very

high intensities (which not even ND filters can withstand) is not trivial, and a technique

to avoid aberrations is described in Appendix A.

Absorption imaging

Absorption imaging measures the optical density of the atomic cloud along the

imaging direction, from which the areal density of the cloud can be extracted. Each

measurement requires three images to be taken, one with the atoms in place casting a

shadow (resulting in �0 (G,~)), one of the probe beam without any atoms (�? (G,~)) and
one without any light to take the background (�1 (G,~)). The optical density (OD) of the

atomic cloud is given by

OD(G,~) = ln

(
�? − �1
�0 − �1

)
, (3.45)

³⁷ DCC3260M by Thorlabs, to be changed to ORCA-Fusion by Hamamatsu for better performance. It
is worth noting that the ORCA-Fusion is a CMOS camera, not an EMCCD which are traditionally
used for low-light applications. We chose this camera after careful (numerical and experimental)
evaluation against an Andor EMCCD camera, and we found the EMCCD only performed better in
the single-photon (per pixel) regime. This can be explained by the extremely low read noise of the
ORCA-Fusion; while the EMCCD has essentially no read noise, it does have a higher shot noise which
cancels its advantage at higher photon numbers.
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which is related to the areal (number) density of the atoms through the optical cross

section f via

=2D(G,~) =
1
f
OD(G,~) . (3.46)

The optical scattering cross section of a two-level system can be written as

f =
3λ2

2c
1

1 + B + (2X/Γ)2 . (3.47)

As we use resonant light with B ≈ 0.1, we can use f ≈ 3λ2/2c . Furthermore, to ensure we

indeed have a two-level system, we excite the closed transition |6,−6〉 → |7,−7〉with af−-

polarised beam. Amagnetic field is therefore kept on during imaging to polarise the atoms.

Fluorescence imaging

Fluorescence imaging is performed by collecting the photons scattered by the atomic

cloud and directing them on the camera, which can be used to determine the number of

atoms present. This can be done the following way. Given the parameters of the imaging

laser, one can calculate the photon scattering rate ' using Eq. (3.1). # atoms scatter at a

rate of #', and given a camera exposure time C the number of scattered photons is given

by #'C . The number of photons reaching the camera is proportional to the solid angle

under which the camera is seen from the atomic cloud. With the knowledge of camera

parameters (e.g. its quantum efficiency) the camera sensor counts can be converted to

a photon number count, which can then be used to determine the number of atoms

responsible for scattering that many photons in the given solid angle.
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Abstract
We use a deep neural network (NN) to detect and place region-of-interest (ROI) boxes around
ultracold atom clouds in absorption and fluorescence images—with the ability to identify and
bound multiple clouds within a single image. The NN also outputs segmentation masks that
identify the size, shape and orientation of each cloud from which we extract the clouds’ Gaussian
parameters. This allows 2D Gaussian fits to be reliably seeded thereby enabling fully automatic
image processing. The method developed performs significantly better than a more conventional
method based on a standardized image analysis library (Scikit-image) both for identifying ROI and
extracting Gaussian parameters.

1. Introduction

Deep neural networks (NNs) have revolutionized data analysis and led to automation of tasks that previously
required human supervision. Image analysis has particularly benefited through the use of convolutional
neural networks (CNNs) [1] and their derivatives which have allowed for image classification [2, 3], object
detection [4, 5] and instance segmentation [6]. Although many of these NNs were developed for tasks such
as facial recognition by social media networks [7, 8], they have also been used to identify laser modes [9],
classify phases in condensed-matter systems [10, 11], reduce measurement errors for trapped-ion qubits [12]
and process images from cold atom experiments [13–15]. In this work, we use an instance segmentation NN
(see figure 1) to analyze experimental images containing atom clouds in magneto-optical traps (MOTs) and
optical dipole traps (ODTs).

Neural networks consist of an input layer and an output layer with a number of intermediate hidden
layers which are connected to one another via ‘weights’. Rather than employing hard-coded algorithms, NNs
learn to emulate data they encounter through training cycles, in which data is iteratively passed through the
NN and the output compared to the ‘ground truth’. The difference between the two is then used to update
the weights between the NNs layers, thereby improving its accuracy. When employing supervised training,
this requires a dataset which includes both input data and their associated ground truth values. For object
detection NNs, these ground truth values are rectangular bounding boxes for each object, as well as labels
classifying the object types in the bounding boxes. Instance segmentation NNs build upon object detection
NNs by also requiring pixel-to-pixel segmentation masks in which image pixels comprising the object have
mask values of one, whereas all other pixels have mask values of zero.

Our dataset consists of images of cold atom clouds in a MOT [16] and an ODT [17] (see
figures 2(a)–(c)). Atom clouds in these traps form approximately Gaussian density distributions [18]. Fitting
a cloud allows the parameters describing the distribution (Gaussian parameters) to be extracted and used to
ascertain information such as the cloud’s size and density. Furthermore, by using time-of-flight
measurements [19] the temperature of the atoms can be determined.

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abf5ee
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abf5ee&domain=pdf&date_stamp=2021-7-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5526-587X
https://orcid.org/0000-0002-5187-730X
https://orcid.org/0000-0002-6350-4842
mailto:robert.smith@physics.ox.ac.uk


Mach. Learn.: Sci. Technol. 2 (2021) 045008 L R Hofer et al

Figure 1. Overview of the neural network (NN). An experimental image is initially fed into a convolutional neural network
(CNN) which produces a ‘feature map’ of the image. The region-proposal network (RPN) uses this feature map to generate
regions-of-interest (ROI) where atom clouds are likely contained. In the ROI alignment stage, the CNNs feature map is cropped
and resized for each cloud’s ROI before being fed into three parallel branches. The first branch (ROI) generates refined ROIs,
whereas the second branch (classify) classifies the type of atom cloud in the ROI. Finally, the third branch (mask) generates a
segmentation mask corresponding to the 1/e2 contour of the atom cloud.

A region-of-interest (ROI) [20] centered on the atom cloud is used during fitting as objects in the image
other than the atom cloud can cause an inaccurate fit (e.g. an atom cloud in another trap or extraneous
noise). Additionally, decreasing the fit area can significantly decrease the fit time when using
two-dimensional fitting. Manually determining the ROI is time-consuming when analyzing a large number
of images and an algorithmic procedure is often employed, such as taking the ‘center of mass’ and then
iteratively expanding the ROI around this point until the fractional enclosed ‘power’ exceeds some threshold.
Another method involves performing connected component analysis on a binarized version of the image and
then measuring the resulting regions using common image processing libraries [21]. However, if the image is
noisy (e.g. contains fringing), the proposed ROIs will be inaccurate for these types of methods (section 6).

Here we propose a deep NN based approach to ROI determination in which a NN finds the ROI for each
atom cloud in an image (see figure 1). Furthermore, the NN differentiates between clouds (classification) in a
MOT and those in an ODT and also outputs a segmentation mask for each cloud from which Gaussian
parameters are directly extracted. The classification feature is particularly useful when the cloud type is not
a priori known from the experimental sequence (e.g. images containing both MOT and ODT clouds during
the ODT loading). Although features such as the position or aspect ratio can be used for classification with
additional manual or experimental input, the NN needs the image alone (beyond training on an appropriate
dataset) to determine cloud types and so is easily adaptable to other cold atom experiments with different
numbers of clouds or cloud types.

The rest of the article is arranged as follows: section 2 describes the experimental dataset used for NN
training and validation, section 3 describes the training process, section 4 discusses Bayesian optimization
(BO) [22, 23] of the NNs hyperparameters [23] and section 5 examines how the Gaussian parameters are
calculated from the segmentation mask. In section 6 we compare our proposed NN method to a more
conventional method of determining both ROIs and Gaussian parameters.

2. Experiment and dataset

To produce the ultracold atom clouds, erbium atoms are initially trapped and cooled to∼20 µK in a
narrow-line MOT [24] before being loaded into an ODT formed from a 30 W, 1030 nm laser beam focused
down to a∼40 µm waist (see figure 2). Optimization of the trap loading involves maximizing the atom
number while minimizing the cloud temperature. The atom number is found by fitting the atom cloud in
either a fluorescence or absorption image4 with a two-dimensional (2D) Gaussian (see equation (1)) and
then integrating under the curve. The cloud temperature can be determined from how the cloud width
evolves during time-of-flight expansion.

The experimental dataset consists of 260 fluorescence and absorption images (1936× 1216 pixels) along
with their ROIs, labels and segmentation masks [25]. Of these, 130 images contain clouds released from the
MOT with no ODT present (see figure 2(b)) and 130 images contain either just atoms released from the
ODT (see figure 2(c)) or images where atoms released from the ODT and the MOT are both present (see

4 Experimental images shown in the paper are processed from two to three raw images. Fluorescence images require both an image with
atoms and a background image without atoms. Absorption images additionally require a probe image in which the probe beam is turned
on, but no atoms are present.

2
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Figure 2. Construction of labelled experimental dataset. (a) Experimental setup. The MOT is formed from six 583 nm laser beams
in conjunction with a quadrupole magnetic field. Atoms trapped in the MOT can be loaded into an ODT formed from a single
1030 nm laser beam. The fluorescence camera captures the light scattered by the atoms from the MOT beams. During absorption
imaging, a 401 nm probe beam passes through the atom cloud which absorbs a portion of the light creating a shadow imaged by
the camera. (b) Image of an atom cloud released from the MOT. (c) Image of an atom cloud released from the ODT. The optical
depth is multiplied by six to increase ODT visibility. (d) Image with both MOT and ODT atom clouds. Each cloud is labelled and
a region-of-interest (ROI) box is drawn around it (white lines). (e) Segmentation masks for the MOT (hatched yellow) and ODT
(solid green) clouds in (d).

figure 2(d)). We manually label the atom clouds in the images as ‘MOT’ or ‘ODT’ and draw a ROI box at the
clouds’ edges which we define as the 1/e2 radii along the x and y axes (see figure 2(d)). This definition
prevents the ROI boxes from overlapping when the MOT and ODT are both present; however, the ROI boxes
are also easily expandable when analysis requires the wings of the distribution.

The manually drawn ROIs were expanded by a factor of two—excepting where the expanded ROIs would
overlap—and the atom clouds inside fit with a 2D Gaussian:

I(x,y) = Ib + I0e
−2

(
[(x−x0) cosθ+(y−y0) sinθ]

2

w2x
+

[(y−y0) cosθ−(x−x0) sinθ]
2

w2y

)
, (1)

where I(x, y) is the image intensity, Ib is the background intensity, I0 is the peak intensity, x0 and y0 are the
center coordinates, wx and wy are the 1/e2 radii along the major and minor axes and θ is the angular
orientation of the distribution. To increase the accuracy of the ROIs used for training, the fit parameters were
used to calculate the 1/e2 radii along the image axes [9] (previously estimated by eye) and the ROI boxes
redrawn using these values. The process of fitting and redrawing the ROI boxes from the fit parameters was
then completed a second time with subsequent iterations neglected due to an insignificant increase in
accuracy.

A segmentation mask was generated for each atom cloud (see figure 2(e)) with the mask borders placed
at the 1/e2 contour of the cloud—calculated from the final fit parameters; pixels within the 1/e2 contour were
set to one, whereas pixels outside were set to zero. Finally, the dataset was randomly split into a training
dataset with 200 images and a validation dataset with 60 images.

3. Neural network and training

We use the NNMask R-CNN [26] to detect and bound the atom clouds, as well as to provide segmentation
masks for each cloud (see figures 3(a, b)). The NN (see figure 1) begins with the experimental image being
fed into a CNN base (ResNet-50 [27]). The CNNs outputted feature map [28] is then passed into a
region-proposal network (RPN) which generates ROIs where objects are likely located. Next, these ROIs are
cropped from the CNNs feature map in a ROI alignment stage and resized to uniform dimensions. The
cropped feature maps are then fed into three parallel branches. The first applies a classifier to determine the
object type and give the confidence of its prediction—which is helpful in determining whether to use the
ROI in post-NN analysis. The second branch gives a more accurate ROI box prediction (see figure 3(a)) and
finally the third outputs a segmentation mask for the object inside the ROI (see figure 3(b)). Since all three
branches share the same base, computation speed is significantly increased [29] for both training and
evaluation.

During training, the NN output is compared to the ground truth (i.e. the expected output from the
training dataset) via a loss function; the loss is then back-propagated [30] through the NN to adjust the
weights between layers and refine the NN model (see figure 4(a)). The loss function for the RPN stage is L1
loss [31], for the ROI branch it is Smooth L1 loss [32], the classifier uses categorical cross entropy loss [33]
and lastly the mask branch utilizes binary cross entropy loss [34]. Although the loss can be separately
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Figure 3. Neural network output. (a) Sample image from the validation dataset with the regions-of-interest (solid white lines),
labels and confidence scores predicted by the NN. (b) The segmentation masks returned by the NN for (a) which, due to the
internal structure of the NN, have values between zero and unity. (c) Reconstruction of (a) using equation (1) and the extracted
2D Gaussian parameters from (b).

back-propagated for each branch, a simpler approach is taken here in which the losses are summed together
and then back-propagated to update the weights of the NN [26].

An epoch denotes a single cycle of training in which every image in the training dataset is passed through
the NN, the loss calculated and the model weights updated. Increasing the number of training epochs can
increase the NN’s final accuracy so long as the NN does not overfit on the training data. However, due to
finite computational resources, we restrict the training of an individual NN to 15 epochs—determined to be
sufficient, see below—and instead use BO to increase the accuracy of the final trained model (see section 4).

Five hyperparameters, which tune the learning process, are set before the NN’s training phase. The first is
the learning rate which determines the size of the step the NN takes during stochastic gradient descent [35]. If
the learning rate is too low, the NN will take too long to converge to the minimum of the loss function,
whereas if the learning rate is too high, the NN will not be able to descend to the minimum, but will oscillate
around it or diverge. Since larger learning rates are useful at the beginning of training and smaller learning
rates are useful towards the end, a learning rate scheduler [36] is employed which decreases the learning rate
by some scalar (decay, the second hyperparameter) after a fixed number of epochs (step size, the third
hyperparameter). The fourth hyperparameter is themomentum which prevents the NN from getting stuck in
a local minimum during training [37]. The last hyperparameter is the batch size—the number of images
simultaneously passed through the NN—and, unlike the other hyperparameters which are tuned with BO, is
fixed to four for all NNs.

The accuracy of the NN is evaluated (see figure 4(b)) using the Common Objects in Context (COCO)
evaluation metric which entails calculating the intersection-over-union [38]:

IoU=
area

(
ROIp ∩ROIgt

)
area

(
ROIp ∪ROIgt

) , (2)

where ROIp is the ROI prediction from the NN and ROIgt is the ground truth ROI. Values below a
predetermined IoU threshold (e.g. IoU= 0.5) are considered a false prediction—mislabelling the object class
within the ROI is also a false prediction—whereas values above are considered a true prediction. A precision
recall-curve [39] is then constructed and integrated to give the average precision (AP) for the given threshold
(e.g. AP50 for the IoU= 0.5 threshold). Finally, the AP is calculated for ten IoU thresholds (0.50–0.95 with a
step size of 0.05) and averaged to give the mean average precision (mAP)—which is the metric generally
reported for object detection. The mask AP values and mAP can be similarly calculated [40].

The NNs are trained in a Google Colab notebook [41] utilizing a GPU backend and implemented in
PyTorch [42] using the pre-built Mask-RCNNmodel in the Torchvision package. Rather than training the
NN from scratch, the model weights are loaded from a network pre-trained on the COCO train2017 dataset
[43]—which significantly reduces the time required to train the network and increases the model’s final
accuracy [44]. Additionally, this transfer learning, complemented by data augmentation (in which images are
randomly flipped horizontally during training), allows us to use a relatively small training dataset. After
each training epoch, the updated NN is evaluated on the validation dataset which yields the mAP for both
the object detection and the segmentation mask branches. These two values are averaged together to give the
accuracy of the training epoch (average mAP) and the epoch with the highest average mAP determines the
overall accuracy of the NN model. After using BO to determine the hyperparameters which give the highest
accuracy, we retrain the NN with these parameters for 30 epochs (see figure 4(c)) and verify that the NNs
accuracy becomes asymptotic at the 15 epoch mark—with no overfitting seen thereafter.
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Figure 4. Training and validating the neural network. (a) During training of the NN, images from the training dataset are fed into
the NN which outputs the regions-of-interest, labels and masks. These outputs are compared to the ground truth values and the
loss calculated. The loss is then back-propagated through the NN and used to update the weights between the NNs layers.
(b) When evaluating the NN, the validation dataset is used in a process similar to (a); however, the mean average precision (mAP)
for both the object detection branch (ROI) and segmentation mask branch are calculated rather than the loss. (c) The mAP of the
ROI branch (solid line), the mAP of the segmentation mask branch (dotted line) and the training loss (dashed line) as a function
of the training epoch for the NN trained with the best set of hyperparameters (see table 1). The shaded region represents the
number of epochs used during Bayesian optimization.

Table 1. The hyperparameter search space used during Bayesian optimization along with the hyperparameter values used to train the
NN to the highest average mAP (see figures 4(a) and 5).

Parameters Lower bound Upper bound Log scale Best value

Learning rate 0.0001 0.009 Yes 0.0033
Momentum 0.7 0.92 No 0.86
LRS step size 3 15 No 13
LRS decay 0.001 1 Yes 0.049

4. Bayesian optimization of hyperparameters

The accuracy of the trained NN is sensitive to the hyperparameters used during training. In the past, the
hyperparameters were tuned through grid search, random search [45] or by hand; however, in recent years,
BO has been successfully employed to find the best set of hyperparameters [23, 46]. BO is particularly useful
when trying to find the minimum (or maximum) of a function which is noisy and expensive to
evaluate—such as NN training—thereby making a grid search of the parameter space impractical [22].

Bayesian optimization takes the function value (cost) at previously evaluated points and uses a Gaussian
process to model the cost as a function of the parameter space [47]. The model also determines the
confidence of its predictions in a given region of the parameter space: perfect certainty at evaluated points,
low uncertainty near evaluated points and high uncertainty far from evaluated points. The BO loop then
determines where to evaluate the function next by weighing the benefits of evaluating the function near the
model’s predicted minimum (or maximum) or evaluating the function in an unexplored region of the
parameter space [48].

When optimizing our NN training with BO, the average mAP of the NN is evaluated as a function of the
hyperparameter space which consists of the learning rate, momentum, and the learning rate scheduler (LRS)
step size and decay (see table 1). As a warm start, the NN is initially trained and evaluated at five
quasi-randomly (Sobol generated [49]) distributed points (see black squares in figures 5(a)–(f)). Further
evaluation points (red circles in figures 5(a)–(f)) are iteratively determined by the BO loop. The Ax Python
package is used for the BO loop as it provides a high level interface to the BoTorch [50] BO package.

With an increasing number of BO evaluation trials the best achieved average mAP rises and converges
(see figure 5(g)). The best set of hyperparameters (see table 1) gives a mAP of 86.3% for the object detection
branch—locating 88 of the 89 clouds—and a mAP of 85.8% for the mask branch. These mAP values are
higher than those for similar NNs trained on the COCO validation dataset [26, 51] which is likely due to our
NN only needing to classify two object types rather than the eighty in the COCO validation dataset [38], as
well as the relatively simple features of the MOT and ODT clouds. The NN also performs well for clouds with
a low signal-to-noise ratio (SNR) which we define as the cloud’s peak amplitude divided by the standard
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Figure 5. Bayesian optimization of hyperparameters. (a)–(f) The average mAP of the NN predicted by the Bayesian optimization
(BO) model as a function of the hyperparameters. The plots are 2D slices through the 4D parameter space taken at the best
position (yellow star) for those parameters not displayed. The NN is initially trained and evaluated at five quasi-random
hyperparameter positions (black squares) after which the BO loop iteratively determines the evaluation points (red dots, size
increases with trial). (g) The best achieved average mAP as a function of the evaluation trial; the quasi-random trial region is
shaded in grey.

deviation of the image’s background intensity; the validation dataset’s nosiest cloud has an SNR of only 2.1
but returns an ROI IoU score of 0.86.

5. Gaussian parameter analysis

We can extract the parameters characterizing the cloud’s 2D Gaussian distribution (see equation (1)) directly
from the NNs segmentation mask output (see figure 6(a)). Taking the 1st moments of the mask yields the
center coordinates {x0,y0} of the atom cloud, whereas the 1/e2 radii {wx,wy} and the angular orientation θ
can be determined by calculating the 2nd moments [52] of the mask. The background intensity Ib is
calculated by generating a histogram of the experimental image’s pixel values (where there is no cloud) and
then taking the peak position (see figure 6(c)). The amplitude of the 2D Gaussian I0 is calculated by
summing the image’s intensity inside the 1/e2 contour to find the power (P) and then applying:

I0 =
2

(1− e−2)

(
P

πwxwy
− Ib

)
. (3)

This method of extracting clouds’ Gaussian parameters directly from the segmentation mask was applied to
the validation dataset (see figure 3(c)) and the results compared to the Gaussian parameters extracted via a
2D fit of the experimental image (see figure 7, blue bars). Apart from θ, we normalized the differences to
obtain a relative error. The cloud center {x0,y0} and the cloud radii {wx,wy} were divided by the fitted radii,
whereas the peak amplitude I0 and the background intensity Ib were both divided by the fitted peak
amplitude.

The Gaussian parameters extracted from the NNs segmentation mask can either be used directly or as
seed parameters for a conventional 2D fit—increasing the likelihood of fit convergence and reducing the
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Figure 6. Extraction of Gaussian parameters. (a) NN extraction of the parameters is performed by first inputting the experimental
image into the NN which returns a segmentation mask for each atom cloud. Applying the first and second moments (Mom.)
directly to the segmentation mask yields the center coordinates of the atom cloud {x0,y0}, its 1/e2 radii {wx,wy} and its angular
orientation θ. (b) For conventional extraction the experimental image is binarized using a thresholding method (Thres. Bin.) and
the binarized image regions labelled and measured (Label Meas.) using Scikit-image’s regionprops function to yield the ROI as
well as {x0,y0,wx,wy,θ}. (c) Extracting the intensity parameters. The intensity offset Ib is determined by taking the intensity
level corresponding to the peak of a histogram of the experimental image pixel values (hist. peak). The peak intensity I0 is
then calculated (see equation (3)) using the power inside the 1/e2 contour and the previously extracted parameters
{x0,y0,wx,wy,θ, Ib}.

Figure 7. Gaussian parameter errors. (a)–(g) Histograms of the extracted Gaussian parameter errors—calculated by comparison
to the 2D fit values—for the atom clouds in the validation dataset. Both the relative errors for the neural network segmentation
mask method (subset, filled blue) and the conventional method (orange) are shown for the 68 clouds which the conventional
method locates. The relative errors for all 88 clouds the NN method locates are also shown (outlined blue). Cloud center
coordinates {x0,y0} and cloud radii {wx,wy} are normalized by the fitted cloud radii. The peak amplitude and the background
intensity {I0, Ib} are both normalized by the fitted peak amplitude. (h) The root-mean-square error (RMSE) of the Gaussian
parameters and the number of clouds analyzed (#).

fitting time. Without a seed, the fit time for a full image (1936× 1216 pixels) is approximately 15 s on an
Intel Xeon 2.2GHz processor core. For the validation dataset, this is reduced to an average of 3 s when using
the ROIs proposed by the NN—expanded by a factor of two except where the expanded ROIs would
overlap—which substantially increases the fit speed despite the NNs processing time of 0.17 s per image
using a Nvidia Tesla V100 GPU. Extracting the Gaussian parameters takes an average of 0.18 s, but results in
an average fit speed up of 2 s per region when used as a seed. Thus, our method of determining ROIs and
seed parameters using a NN offers a significant speedup in conjunction with fitting.
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6. Comparison with conventional analysis

For comparison with the NN, a conventional method is used to find the ROIs and Gaussian parameters of
the clouds (see figure 6(b)). We utilize standard methods based on Python’s Scikit-image (Skimage) package
[21] to pre-process the images, determine ROIs for the clouds, and extract the Gaussian parameters.

During pre-processing, a histogram is taken of the image’s pixel intensities. As the cloud areas are much
smaller than that of the overall image an approximately Gaussian peak corresponding to the image’s
background level and noise is seen. The mean µ and standard deviation σ of a Gaussian fit to this peak are
used to define a threshold value Ithresh = µ+ 3σ [53] and the image is binarized by setting pixels with
I> Ithresh to one and the remainder to zero.

After pre-processing, connected component analysis [54] is applied to the binarized image which
groups pixels of the same value together into ‘regions’ (e.g. an atomic cloud). These regions are fed into
Skimage’s regionprops method which returns both the ROI coordinates and the geometric parameters
{x0,y0,wx,wy,θ} for each region. ROIs with an area> 1

2 or<
1
800 the image size (i.e. much larger or smaller

than the size of the clouds under measurement) are removed and the two largest remaining ROIs—if there
are more than one—are taken as the MOT and ODT ROIs since smaller regions generally coincide with
remaining high noise regions.

Applying this method to the validation set locates 68 of the 89 clouds with an IoU> 50%; this is
significantly worse than the NN which locates 88 of the 89 clouds. The mAP is also calculated, but since the
conventional method does not differentiate between MOT and ODT clouds, all the validation dataset regions
are relabelled as ‘cloud’. Even with this simplification, an mAP of only 11.1% is achieved—much lower than
the NN’s object detection mAP of 86.3%. On closer inspection, the conventional method fails on images with
low SNR such as images with significant fringing.

To determine the Gaussian parameters of the 68 successfully bounded clouds we apply a numerical
scaling factor (to account for our thresholding method [52]) to the {wx,wy} returned from regionprops and
then generate a binary mask from the resulting {x0,y0,wx,wy,θ} which is used to find the cloud’s
background intensity Ib and amplitude I0 (see figure 6(c)) as in section 5. The parameters are normalized
and compared to those from the 2D fit (see figure 7, orange bars). Since the conventional method only
recognizes a subset of the clouds, we quantitatively compare against the NN segmentation method for the
same cloud subset (shown as filled blue bars in figure 7); a direct comparison of the root mean squared errors
is shown in figure 7(h).

When considering both object detection and Gaussian parameter extraction, the NN method
significantly outperforms the conventional method. Additionally, the conventional method’s efficacy
depends on the SNR of the data, whereas the NN is more robust against high noise levels and fringing since it
learns higher level features of the atom clouds. Furthermore, the conventional method requires manual
determination of the best pre-processing procedures and therefore potentially needs further tuning for new
data; however, when faced with new data the NN simply needs to be retrained with more labelled data, thus
making it effective in a laboratory setting.

7. Conclusion

An instance segmentation NN (Mask R-CNN) was trained to identify ultracold atom clouds in MOTs and
ODTs. The NN generates both a ROI and a segmentation mask for each cloud—corresponding to the cloud’s
1/e2 radii—with a mAP of 86.3% and 85.8% on the ROI and the segmentation mask branches, respectively.
We show that the Gaussian parameters describing the atom clouds’ distributions can also be extracted
directly from the segmentation masks. Both ROI determination and Gaussian parameter extraction via the
NN are significantly more accurate than a conventional method based on Python’s Scikit-image library.

With an appropriate training dataset these techniques could be applied to ultracold atom clouds in other
traps such as optical lattices [55, 56] and box potentials [57]; they are also directly applicable to laser beam
profiling and other machine vision applications which require analysis of one or more 2D Gaussian
distributions.

In the future a custom NN could be created by adding a branch after the ROI alignment stage which
would output the cloud parameters directly. This would enable the characterization of non-Gaussian density
profiles, useful, for example, in the detection, identification and parameterization of the bimodal clouds seen
when a Bose–Einstein condensate [58, 59] is present.

8



Mach. Learn.: Sci. Technol. 2 (2021) 045008 L R Hofer et al

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
doi.org/10.5287/bodleian:Y56kydgmj. Data will be available from 7 January 2021.

Acknowledgments

We thank Elliot Bentine, Shu Ishida and Jirka Kučera for helpful discussions and comments on the
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4
Bose–Einstein condensation of erbium

University of Cambridge. Gules, on a cross ermine
between four lions passant gardant Or, a Bible fesswise
Gules, clasped and garnished Or, the clasps in base.

In this Chapter we present the attainment of a Bose–Einstein condensate of erbium

in our apparatus. We first discuss evaporative cooling and methods for detecting

and measuring BECs. With the knowledge of the loss landscape (presented in

Chapter 5), we optimise the production of dipolar 166Er BECs, achieving more than

2× 105 atoms in the condensate, which we describe in detail.

4.1 Introduction

In order to produce a Bose–Einstein condensate of erbium, we employ standard laser

cooling and trapping techniques as described in Chapter 3. Let us briefly revisit these,

after which we can discuss our BEC production sequence in detail. In the initial steps, an

atomic beam from a high-temperature effusion cell oven is slowed down using a Zeeman

slower operating on the broad transition at 401 nm. The slow atoms are loaded into a

narrow-line magneto–optical trap (MOT) operating on the atomic transition at 583 nm,

and we typically capture 108 atoms after loading the MOT for 12 s. Afterwards, we ramp

to a compressed MOT (cMOT) configuration in 600ms, where reducing the light detuning

and intensity causes simultaneous compression and cooling, resulting in a spin-polarised

atomic sample at a temperature of 10 µK.
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100 Bose–Einstein condensation of erbium

As the critical temperature for Bose–Einstein condensation is less than 1 µK, we need

to cool the sample further. To achieve this, we transfer the atoms into an optical dipole

trap (ODT) in which we perform evaporative cooling, presented in §4.2. In §4.3 we discuss

techniques to detect and measure BECs and we present our experimental sequence in §4.4.

4.2 Evaporation

Recall that to achieve Bose–Einstein condensation, the peak phase-space density of

the gas needs to reach d = =λ3dB ≈ 2.612 (cf. §2.3). To calculate the peak d for our system,

we make use of the density distribution of a thermal gas in a harmonic trap (well above

the BEC transition temperature), given by

=(r) = =(G,~, I) = =0 exp
©­­«−
<

(
l2
GG

2 + l2
~~

2 + l2
II

2
)

2:�)

ª®®¬ , (4.1)

where lG , l~ and lI are the trap frequencies and =0 is the peak density [102, 133, 248]. If

the number of the atoms in the trap is # , the peak density is fixed by the normalisation

condition # =
∫
=(r) d3r, which yields

=0 = #l̄
3
(

<

2c:�)

)3/2
, (4.2)

where l̄ = 3
√
lGl~lI is the geometric mean of the trap frequencies. Therefore, the peak d

can be calculated as

d0 = =0λ
3
dB = #

(
ℏl̄

:�)

)3
. (4.3)

After loading the ODT, our parameters yield d0 = 2.7 × 10−4. To gain the required

four orders of magnitude in phase-space density, we subject the atoms to the final stage

of cooling, evaporation [133, 249], which takes place in the optical dipole trap (ODT). The

surprisingly simple working principle of this technique is shown in Fig. 4.1. As the ODT

trap depth is lowered (by decreasing the laser intensity), the most energetic atoms can

escape the trap. As these atoms have a higher average energy than the average of all

atoms, the average energy of the remaining atoms decreases. As the gas rethermalises

via collisions, this leads to a lower temperature, i.e. cooling. Interestingly, this technique

has no theoretical limit regarding the lowest achievable temperature, and in 2003, the

group of Wolfgang Ketterle at MIT cooled a gas of 23Na to a mere 0.5 nK above absolute
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Figure 4.1. Evaporative cooling. As the trap is made shallower, the most energetic atoms
escape leaving the remaining atoms colder on average, once they rethermalise
via collisions. Figure adapted from Ref. 133.

zero [250]. However, we should recognise the fact that cooling comes at the expense of

losing atoms from the system.

The method can be understood using a simple model [133]. Let us consider a small

step in the evaporation process, during which the atom number changes by d# and the

temperature by d) . It can be shown that the total energy (kinetic and potential) of a

thermal gas in a 3D harmonic trap is � = 3#:�) [248]. (This can simply be understood via

the equipartition theorem, as :�) /2 energy resides in each of the three translational and

the three vibrational degrees of freedom.) The energy of the atoms after an evaporation

step can be written as the sum of the energy of the atoms before evaporation, 3#:�) , and

the energy taken away by the evaporated atoms, [:�) d# , where [ is a free parameter

relating to the average energy of the evaporated atoms, governed by how high in energy

we ‘cut’ the trap. Therefore,

3:� (# + d# ) () + d) ) = 3#:�) + [:�) d# , (4.4)

which leads to
d)
)

=
[ − 3

3
d#
#

, (4.5)

i.e.) ∝ # V where V = ([ − 3)/3. We see that for cooling to take place, we need V > 0, i.e.

[ > 3. Furthermore, for the largest fractional change in ) , we see V should be as high as

possible, but letting only the most energetic atoms escape the trap means that only a few

atoms would leave each time and evaporation would take very long. This is problematic,
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as there are other atom loss processes taking place at the same time which do not lead

to cooling (e.g. collisions with the background gas, or three-body loss which leads to

heating). Therefore, we need to evaporate quickly enough to not lose the atoms altogether.

To progress towards Bose–Einstein condensation, we also need to ensure that the

phase-space density increases during evaporation. We can estimate the size of the cloud '

by equating the potential energy with the kinetic energy (in a given direction),<l2'2/2 =
:�)/2, which leads to ' ∝

√
) . Therefore, = ≈ # /'3 ∝ # 1−3V/2. As λ3dB ∝ ) −3/2 ∝ # −3V/2,

we find d = =λ3dB ∝ # 1−3V . Therefore, for the phase-space density to increase during

evaporation, we need V > 1/3, i.e. [ > 4.

Besides this, we also need to make sure that the collision rate is high enough to

ensure that thermalisation takes place effectively. The collision rate is given by
√
2=fĒ ,

where f is the collision cross section and Ē is the average velocity of the atoms. Given

Ē ∝
√
) ∝ # V/2, we find =fĒ ∝ # 1−V . Therefore, to maintain efficient thermalisation, we

need V > 1, i.e. [ > 6. Such [ can be achieved in experiments, and we can reach BEC with

our apparatus after 7 s of evaporation.

4.3 Detection and measurement of Bose–Einstein

condensates

To determine the phase-space density (and to confirm that we indeed achieved Bose–

Einstein condensation) we measure ) and # via absorption imaging after a time of flight

(see §3.6.2). This yields us the areal density =2D(G,~), from which the atom number can

be deduced by integration.

The temperature of the gas can be determined from the time evolution of the shape

of the spatial wings of the distribution ascribed to the thermal cloud, using the ‘time of

flight’ (ToF) technique, where the atoms are released from the trap and imaged after a

varying time C . (During this time the cloud expands and falls under gravity.) The density

in the wings of the spatial distribution decays generally as 4−A
2/f2 (C) , even if the gas is

close to (or below) the critical temperature. (Note that from here on, we redefine f to be

a parameter describing the density distribution, and it is not the scattering cross section.)

This evolves in time according to [251, 252]

f2(C) = f2(0) + :�)
<

C2. (4.6)

The parameter f for a thermal cloud (far away from )2 ) released from a harmonic trap

can be determined by fitting a Gaussian function to the image (as the Gaussian density
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distribution of a thermal cloud in a harmonic trap remains Gaussian after expansion).

However, close to and below the critical temperature, the density distribution of the

thermal component (the atoms not in the condensate) within the trap is given by [102]

=th(r) =
1

λ3dB
63/2

(
4−V* (r)

)
, (4.7)

where * (r) is the trap potential, V = 1/:�) as before and 63/2(G) is a so-called Bose

function,¹ defined by 6 9 (I) =
∑∞
;=1 I

;/; 9 . When such an in situ density distribution is

released from the trap, after free expansion the density distribution becomes [102]

=exp(r, C) =
1

λ3dB
63/2

(
4−V*̃ (r,C)

) ∏
8=G,~,I

1√
1 + l2

8
C2
, (4.8)

where *̃ (r, C) = ∑
8=G,~,I<l

2
8 A

2
8 /2

(
1 + l2

8 C
2) .

As in our measurements we can only measure the sum of the BEC and the thermal

density distribution, we need to establish how the two components contribute to the sum.

(It is important to note that the BEC in itself does not have a temperature, a temperature

can only be ascribed to the whole system containing the BEC and the non-condensed

thermal part.) In the trap, the shape of the BEC is given by a parabola within the Thomas–

Fermi approximation (cf. Eq. (B.18)), and it can be shown that even after free expansion

it retains a parabolic shape [64]. In our images, as we image along a certain direction, we

measure the areal density along the direction of propagation of the imaging beam (let us

call this I), so the 3D density distributions have to be integrated along this direction for fit-

ting.These lead to a bimodal areal density distribution, which can be parametrised as [252]

=2D(G,~) =
=̃th

62(1)
62

(
4−G

2/2f2G−~2/2f2~
)
+ =̃2 max

(
1 − G2

'̃2G
− ~2

'̃2~
, 0

)3/2
, (4.9)

where the first term corresponds to the thermal component and the second one to the

BEC. Here =̃th and =̃2 are the density amplitudes associated with the thermal component

and the condensate, respectively, and fG,~ and '̃G,~ characterise the size of the thermal

component and the condensate after expansion, respectively ('̃G,~ are called the scaled

¹ This function is more widely known as the polylogarithm function, with the more conventional
notation Li9 (I) = 6 9 (I) outside quantum mechanics. It arises frequently within ultracold atoms as it
is the intergral of the Bose–Einstein distribution,

Li9 (I) =
1

Γ( 9)

∫ ∞

0

C 9−1

4C/I − 1
dC .
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Figure 4.2. Crossed optical dipole trap. The ODT is implemented using two crossed,
far-detuned beams at 1030 nm. The horizontal (ODT1) beam can be enlarged
by dithering it with an AOM, e.g. to achieve a better overlap with the cMOT.
The cross (ODT2) beam propagates 15° to the vertical.

Thomas–Fermi radii). It is this fG,~ that we need to use for determining the temperature

via Eq. (4.6). For large G and ~, i.e.F = 4−G
2/2f2G−~2/2f2~ � 1, we find

62(F) =
∫ ∞

0

C

4C/F − 1
dC ≈

∫ ∞

0

C

4C/F dC = F , (4.10)

so the areal density of the thermal part still scales as 4−G
2/2f2G−~2/2f2~ , the same as before

the Bose enhancement.

4.4 Bose–Einstein condensation of 166Er

Our optical dipole trap is implemented using two crossed (roughly orthogonal), far-

detuned beams at 1030 nm, which we call ODT1 and ODT2, respectively (this is known as

a ‘crossed trap’). In our system, ODT1 provides the majority of trapping, and the effect of

ODT2 becomes significant only towards the last stages of evaporation, when it ensures a

sufficiently high trapping frequency in the propagation direction of the horizontal ODT

beam to prevent the spread of atoms in that direction. The system is shown in Fig. 4.2.

Initially, the 21 µm× 24 µm waist ODT1 beam is superimposed onto the cMOT, with a

total power of 21W and with a 50 kHz spatial dithering applied in the horizontal direction

using an acousto-optic modulator (AOM) [235], which broadens the horizontal (21 µm)
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Figure 4.3. BEC production. The evaporation sequence consists of three parts. During
phase I, the trap depth is lowered in parallel with ramping down the dithering.
In phase II, the atoms are drawn into the crossing with the second ODT beam
as the cooling continues. Finally, in phase III, the entire atomic density is
in the crossed trap. %1 and %2 correspond to the power in ODT1 and ODT2,
respectively, the dithering amplitude � is shown in arbitrary units (as it does
not have a linear correspondence to the beam waist) and =0 is the resulting
peak atom number density.

waist by a factor of two. (This dithering is applied to increase the spatial overlap between

the cMOT and the ODT.) We transfer 1.8× 107 atoms into the ODT during the 40ms

overlap period. After the transfer, the temperature of the atoms is 37.5 µK, i.e. the sample

heats up as it is moved from one trap to the other.

We then proceed with the evaporation sequence using a magnetic field of 1.4 G, as

this corresponds to the region of lowest three-body loss across the temperature range

encountered during evaporation (see Chapter 5). The BEC production sequence is shown

in Fig. 4.3 and can be split into three stages. In stage I, we evaporate from the crossed trap

while simultaneously reducing the horizontal trap depth and changing the aspect ratio by

ramping down the dithering.²The ODT2 beam has a waist of 140 µm× 33 µm and an initial

power of 2.4W. In stage II, as we continue ramping down the ODT powers (both beams),

the cooling continues and the remaining atoms go into the crossing of the ODT beams.

To characterise our cooling sequence towards quantum degeneracy, the peak phase-

² We change ODT powers and the dithering amplitude using exponential functions, to create a smooth
ramp.
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Figure 4.4. Evaporation to BEC. (a) Evolution of the peak phase-space density d0 (blue
circles) and atom number density =0 (orange circles) with the total atom num-
ber # during evaporation. A linear fit on the logarithmic plot shows that
W = 3.1(1) orders of magnitude in d0 are gained at the expense of an order
of magnitude reduction in the atom number. (b–f) Time-of-flight absorption
images and summed density plots of atomic clouds: (b, c) just prior to condens-
ation, corresponding to the highest-d0 point in (a); (d, e) a partially condensed
cloud; (f, g) a nearly-pure BECwith 2.2× 105 atoms in the condensate at 140 nK.
The time of flight was 18ms for (b) and (d), and 24ms for (f). The solid lines
are the summed densities and the dashed lines are fits of the extended Bose
distribution to the thermal component of the clouds, from which the temper-
ature can be extracted. We see that a sharp peak appears on top of the thermal
distribution, which confirms Bose–Einstein condensation in the cloud.

space density (given by Eq. (4.3)) is shown as a function of the atom number in the

trap in Fig. 4.4(a) (note that the evaporation proceeds from right to left in this figure,

as the atom number decreases during evaporation). After loading the ODT we have

# = 1.8 × 107 atoms at) = 37.5 µKwith d0 = 3.8 × 10−4 (the lowest-d point in Fig. 4.4(a)),

whereas towards the end of the ramp, we have # = 8.7 × 105 atoms at ) = 450 nK with

d0 = 3.02 (the highest-d point in Fig. 4.4(a)). We see that during this process we lose ca.

95% of our atoms, but we gain four orders of magnitude in the peak phase-space density,

and cross the boundary of Bose–Einstein condensation (at d0 ≈ 2.612).

The evaporation efficiency can be characterised by the order of magnitude increase in

the phase-space density at the expense of an order of magnitude decrease in the atom

number [249]. This is given by

W = −
d(ln(d))
d(ln(# )) = −#

d0

dd0
d#

. (4.11)

Within the model presented in §3.4.6, for a harmonically trapped thermal gas we find the
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surprisingly simple result W = [−4 via Eq. (4.5). In our case, by fitting Eq. (4.11) to the data

we find W = 3.1(1), which leads to [ = 7.1(1). This confirms that we evaporate efficiently.

Once we evaporate further, we pass the BEC threshold and a condensate develops.

From a detection point of view, the condensate manifests itself as a ‘bump’ on the Bose-

enhanced Gaussian distribution of the thermal component, and its observation confirms

Bose–Einstein condensation in the system. The development of the bimodal distribution

(Eq. (4.9)) can be seen in Figs. 4.4(b)–4.4(g), which shows that an erbium BEC develops

as the temperature is lowered (and the phase-space density is increased). We observe

the onset of condensation at 500 nK towards the end of stage II, so in stage III of the

evaporation, when the atoms fully reside in the crossed trap, we ramp the dithering

up again to increase the trap size and thereby decrease the density of the gas. This is

important as the large density of the condensate would otherwise lead to excessive

three-body losses. At the end of stage III, at 140 nK we achieve a nearly pure condensate

with 2.2× 105 atoms. Therefore, we achieve higher atom numbers than what have been

used so far (1.4× 105 [207]) in experiments probing the roton regime of dipolar physics.





5
Characterisation of three-body loss
processes

The Holy See. Gules, two keys in saltire, that in bend
Or and that in bend sinister Argent, wards pointing
upwards and depicting the Cross of Our Lord therein,
the handles interlaced of a cordon of the second, all
surmounted by a tiara Argent triple crowned Or.

The first experimental realisation of dipolar quantum droplets and supersolids in

ultracold gases of highly magnetic atoms have been reported recently, and their

exact structure and properties are the subject of intense research. However, studies

have been limited by the achievable atom numbers and hindered by high three-body

loss rates. In this Chapter we present a study of density-dependent atom loss in

ultracold 166Er, identifying several previously unknown features which display a

strong temperature dependence, suggesting a higher partial-wave character. The

detailed knowledge of the loss landscape enables the optimisation of the production

of dipolar BECs, as presented in Chapter 4.
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5.1 Introduction

The ability of precisely knowing and controlling the nature and strength of the inter-

particle interactions has been a key factor in the success of using degenerate ultracold-

atom samples for studying many-body quantum phenomena. As shown in §2.2.4, the

application of a magnetic field close to a Feshbach resonance is a highly versatile, con-

venient and well-established tool for tuning the sign and strength of B-wave contact

interactions that typically dominate in ultracold gases [58]. Furthermore, Feshbach res-

onances can be utilised for the formation of diatomic molecules and the possibility of

realising ultracold molecular ensembles holds great prospects for future research [96].

However, approaching a Feshbach resonance also leads to the enhancement of (detri-

mental) three-body loss processes, which result in heating and atom loss [168]. Therefore,

knowing the location and width of Feshbach resonances and quantifying the associated

losses are essential for designing and optimising ultracold-atom experiments.

The realisation of ultracold samples of highly magnetic erbium [61] and dysprosium

atoms [60] has led to the discovery of dipolar quantum droplets [76, 77, 215] and a

supersolid phase [81, 207, 253], which concurrently exhibits global phase order and

spontaneous spatial density modulation. While first experiments were carried out in cigar-

shaped traps leading to (relatively simple) one-dimensional (1D) spatial ordering, more

recently droplet arrays and supersolids with two-dimensional (2D) ordering have also

been observed [212, 254]. Theoretical works predict a plethora of possible novel patterns

in 2D systems, including so-called honeycomb, labyrinthine and pumpkin phases [211,

213, 255–257]. However, reaching these exotic states requires degenerate samples with

higher atom numbers than what have been used so far (1.4× 105 [207]).¹

The maximal achievable atom number in an experiment is often limited by three-body

loss processes which limit the efficiency of evaporative cooling and result in losses at (or

while approaching) the desired B-wave scattering length. In alkali atoms the (number)

density of Feshbach resonances is typically between 0.1 G−1 and 0.01 G−1, and they are

usually B-wave in character. However, in magnetic lanthanides (including erbium and

dysprosium), the anisotropy of the van der Waals and the dipole–dipole interaction

potentials leads to coupling between many scattering channels and the consequent

abundance of Feshbach resonances [69, 169].

In this Chapter we present the theory behind three-body loss processes in §5.2, and in

§5.3 we characterise losses for 166Er for magnetic fields below 4G, revealing the presence

¹ We note that Ref. 85 indicates that BECs with up to 106 atoms can be realised in that experiment, but
that apparatus has not been used for exploring supersolid phases so far.
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of six previously unreported resonant loss features which display a strong temperature

dependence.

5.2 Loss processes

There are multiple processes which lead to atom loss from a trap. These can be

characterised by their density dependence, which in turn depends on how many trapped

atoms take part in the loss process. One-body loss arises e.g. due to a trapped atom

colliding with an atom from the background gas (due to an imperfect vacuum), leading to

a loss rate (per unit volume) proportional to=(r), the number density of the trapped atoms.

Two-body loss can arise due to non-elastic, spin-changing collisions between the trapped

atoms [140], leading to loss proportional to =2(r). Finally, three-body loss arises when

two particles form a molecule and a third takes away the excess energy and momentum,²

leading to loss scaling with =3(r) [168]. The binding energy of the molecule formed during

the three-body process is �bind = ℏ2/<02B ≈ :� × 100 µK [138], which is much larger than

the trap depth for a standard evaporation sequence (cf. the critical temperature is less

than 1 µK). Therefore, when a molecule is formed and this energy is released as the kinetic

energy of the particles participating in the collision, they leave the trap and are lost.

In a dilute gas, the leading loss term is one-body loss, which underlines the importance

of creating ultra-high vacuum conditions, to minimise the number of background gas

atoms interacting with the trapped gas. In our system, atoms are prepared in the lowest-

energy spin-state at a low temperature, so two-body loss processes are energetically

suppressed (see §2.2.3). While three-body loss can be negligible for a dilute gas, it can

be significant for a denser sample, e.g. a condensate. Furthermore, three-body losses are

also enhanced close to Feshbach resonances. Loss processes involving more atoms are

also possible, but the likeliness of each process generally decreases with the number of

atoms involved, so their contribution is normally small.³

The atom density loss rate for our system can therefore be written as

¤=(r) = −!1=(r) − !3=3(r) , (5.1)

² It is important to note that it is this molecule formation which leads back to the true ground state of
the ultracold erbium atom system, the solid phase.

³ This is due to the fact that an increasing number of atoms need to be in the vicinity of each other, and
for a dilute gas this is less and less likely. However, other phenomena can lead to the suppression of
certain loss processes, and e.g. in our system even though two-body loss is suppressed, three-body
loss still needs to be taken into account.
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where 1/!1 = g1 is the one-body lifetime and !3 is the three-body loss coefficient.⁴ The

atom number loss can be found simply by

¤# =

∫
¤=(r) d3r . (5.2)

Interestingly, the three-body loss rate acquires a factor of 1/3! in a BEC, due to the quantum-

correlated nature of the gas, accounting for the fact that density fluctuations are sup-

pressed in a quantum gas [258] (the three-body process occurs between three identical

bosons in the same single-particle state). The loss model for a BEC is presented in Ap-

pendix B for completeness.

5.3 Three-body loss

For our three-body loss measurements we prepare an ultracold, spin-polarised sample

of 166Er as described in §4.4; here we only note that the final stage of cooling is achieved by

evaporation in the optical dipole trap (ODT), with the temperature) of the atom cloud set

by the ODT depth. To measure clouds at different temperatures, we interrupt the normal

evaporation sequence at different times and ramp up the depth of the ODT over 100ms

to achieve the desired temperature and to prevent any further evaporative cooling (and

associated atom loss) during our measurements. We initiate the loss measurements by

quenching the magnetic field � to the desired value.⁵ To avoid ramping through wide

resonances, for measurements above 3G we evaporatively cool at 3.8 G, whereas for meas-

urements below 3G we cool at 1.4 G, the regions at which three-body loss is the smallest.

We measure the loss coefficient using thermal clouds at a range of temperatures

by measuring the atom number # and temperature ) as a function of the time C the

atoms are held in the trap at a given magnetic field � using absorption imaging. The

trap frequencies were (separately) measured by exciting dipole oscillations in the three

perpendicular directions and g1 was independently determined to be g1 = 33.2(3) s from
measurements of low-density clouds over much longer timescales (see Fig. 5.1).

5.3.1 Atom number decay

In Fig. 5.2 we show a typical # (C) curve for a thermal gas. To understand the form of

the curve and to extract the three-body loss coefficient, let us recall that for a thermal gas

⁴ This equation is essentially a Taylor expansion of the loss rate in powers of =. The first-order term
results in an exponential decay, so 1/!1 is the associated one-body lifetime.

⁵ The magnetic field is calibrated using radio frequency spectroscopy within the ground state Zeeman
manifold.
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Figure 5.1. One-body lifetime. Measurement of the one-body lifetime g1 at a magnetic
field of 1.4 G (to minimise three-body loss). Data points are indicated by blue
circles, a fit of Eq. (5.3) with g1 = 33.2(3) s is shown with a black line.

in a harmonic trap (well above the BEC transition temperature), the density distribution

is given by Eq. (4.1). Substituting this to Eq. (5.2), the evolution of the atom number is

given by

¤# = − 1
g1
# − !3

(
<l̄2

2
√
3c:�

)3
# 3

) 3 . (5.3)

The loss model can be extended by realising that due to the high kinetic energy of

the lost particles, they can knock out further atoms on their way out of the trap. This

contribution can be estimated with a simple approximation. If a collision product has a

scattering cross section f and velocity E �
√
:�) /< (i.e. the product is much faster than

the gas particles), the average scattering rate with further gas particles is given by 〈=〉fE .
The average time the collision product spends in the cloud is on the order of 〈A 〉/E , where

〈A 〉 is the characteristic size of the cloud. Therefore, the collision product goes through

〈=〉〈A 〉f secondary collisions, and due to the high energies involved, the participating

particles are also lost from the trap. This leads to

¤# = − 1
g1
# − !3

(
<l̄2

2
√
3c:�

)3
# 3

) 3

(
1 + 1

3
〈=〉〈A 〉(f + f̃)

)
, (5.4)

where the factor of 1/3 accounts for the fact that the three-body collision event rate is

one third of the original three-body atom loss rate (given each event leads to three atoms

lost in our initial model) and we used the fact that the collision cross section for the
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Figure 5.2. Time evolution of the number of atoms. Typical time evolution of the number
of atoms in a thermal cloud at � = 2.7G with an initial temperature of 0.5 µK.
Emptymarkers represent data points and the filledmarker is the initial number
of atoms (its 0 time coordinate cannot be plotted on the logarithmic axis). The
black line is a fit to the data according to Eq. (5.3), and the grey shading shows
the points used for the fit, for which the temperature does not increase by
more than 40% to avoid a fitting bias. The dashed line is a fit of Eq. (5.5).

Feshbach molecule (f̃) and for the third particle (f) is different. The characteristic size

can be estimated via 3:�) /2 ≈ <l̄2〈A 〉2/2, whereas 〈=〉 can be estimated via Eq. (4.2).

Putting all this together, the atom loss is given by

¤# = − 1
g1
# − !3

(
<l̄2

2
√
3c:�

)3
# 3

) 3

(
1 +�<#

:�)
l̄2(f + f̃)

)
, (5.5)

where all factors of O(1) (geometrical and otherwise) have been collected in the combined

factor � . While � can be estimated (see Appendix B), f + f̃ is a new model parameter.

5.3.2 Heating

In Fig. 5.3 we show a typical ) (C) curve for a thermal gas. Besides an atom number

decay, we see that the cloud also heats up. This heating is understood to be due to two

processes. First, the loss rate is higher in the (higher density) central part of the trap,

so lost atoms have a lower energy on average than the average of all the atoms in the

trap, leading to ‘anti-evaporation’. Second, secondary collisions also have an effect on

the temperature evolution as well, via the lost energy of the secondary collision partners.
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Figure 5.3. Time evolution of the temperature. Typical time evolution of the temperature
of a thermal cloud at � = 2.7G with an initial temperature of 0.5 µK. Empty
markers represent data points and the filled marker is the initial temperature
of atoms (its 0 time coordinate cannot be plotted on the logarithmic axis). The
dashed line is a fit to the data according to Eq. (5.9).

For a thermal cloud in a harmonic trap (with trapping potential * (r) =<∑
8 l

2
8 A

2
8 /2,

where 8 labels the three spatial dimensions G , ~ and I), the temperature evolution can

be obtained by considering the evolution of the energy of the cloud � = 3#:�) . On one

hand, we see
¤� = 3:� ( ¤#) + # ¤) ) . (5.6)

However, using the loss rate and the energy lost at each event directly, we can also write

¤� =

∫
¤=(r)

(
* (r) + 3

2
:�)

)
d3r . (5.7)

Equating these two expressions for the energy loss and using Eq. (5.1) for ¤=(r) leads

to [168]

¤) =
!3

3

(
<l̄2

2
√
3c:�

)3
# 2

) 2 , (5.8)

where we took the gas to be thermal with a density distribution given by Eq. (4.1). It is

interesting to note that one-body loss does not lead to heating (as atoms at all energies

are removed with an equal probability), but three-body loss does as expected.

Secondary collisions have an effect on the temperature evolution as well, via the

lost energy of the secondary collision partners. (The average energy of the secondary
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collision partners is not necessarily the same as the average energy in the cloud.) Using

the extra number of lost particles in Eq. (5.5), we see

¤) =
!3

3

(
<l̄2

2
√
3c:�

)3
# 2

) 2

(
1 +�′<#

:�)
l̄2(f + f̃)

)
, (5.9)

where we �′ incorporates the (slightly different) numerical prefactors associated with

the extra energy lost (see Appendix B for an estimation).

5.3.3 Fitting procedure and model comparison

To determine !3, we measure # and ) as a function of C . For a thermal cloud, the

numerical solution of Eq. (5.3) is fit to the experimental data using the weighted least-

squares method.⁶ Fitting is done by varying the fit parameters to minimise

j2 =
∑
8

(#data(C8) − #sol(C8))2

f2
#
(C8)

, (5.10)

where a 3% relative error was used⁷ for estimating the standard deviation of the atom

number measurements (i.e. f# (C8) = 0.03#data(C8)). Furthermore, as our model assumes

that !3 is independent of temperature (which will be shown not to be the case), we only

use those data points for which the temperature does not increase by more than 40%

compared to the initial temperature, to avoid a large temperature change affecting our fit

(this is shown in Figs. 5.2 and 5.3 as the shaded region).

To calculate the (numerical) solution of Eq. (5.3), ) (C) must be known. In these fits

we use the measured ) directly (by interpolating between the measured data points).

However, when evaluating the extended loss model, we use its capability to predict both

# and ) (which both depend on each other), and so the fitting process is slightly more

complicated as both of these are measured. In this case, fitting can be done by minimising

the total j2 = j2
#
+ j2

)
by varying the fitting parameters, where j2

#
corresponds to the

number data and j2
)
to the temperature data. (We measured f) /) ≈ f# /# ≈ 3% as well.)

This approach is warranted by the fact that we really only have a single model which has

an output of # (C8) and ) (C8), and j2 =
∑
8 (data − prediction)2/f2 = j2

#
+ j2

)
.

⁶ Fitting and numerical solution of the differential equations were done via the scipy package [259].
⁷ This figure is based on the standard deviation of multiple measurements of the same data point—we
found this was always ca. 3% of the data value itself. It is worth noting that as long as this is a small
value (or constant across the data points), this does not have a considerable effect on the fitted !3, it
only affects the standard error of the fit.
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Figure 5.4. Three-body loss in 166Er. Extracted three-body loss coefficients (!3), and their
standard errors. !3 was measured at initial cloud temperatures of 0.5 µK, 1.5 µK
and 4 µK. The colours ranging from darker to lighter represent temperature
variation from colder to hotter samples. As the temperature increases, the
peaks shift to higher � values and their widths increase, and indeed new peaks
appear. Newly (previously) identified peaks are marked with dotted (solid)
blue lines.

In both cases, the upper and lower standard error for the fit parameters are calculated

by varying the given parameter up and down, respectively, to the point where j2 increases

by 1, while optimising the other parameters [168, 260].

The models can be compared to each other by calculating the reduced j2, which

we denote j2A . (A better fit reduces j2A ; a good estimation of experimental errors should

yield j2A ≈ 1.) Without taking secondary collisions into account and using the measured

temperatures directly, this is given by

j2A =
j2

 − 2
, (5.11)

where  is the total number of measurements. This is reduced by 2 to account for the fact

that we fix #sol(0) to be the data point taken at C = 0 (i.e. this data point is not fitted) and

that we have one fitting parameter (!3, given g1 is fixed by earlier measurements). For the

extended model, where we use its predictions for both # and) , the reduced j2 is given by

j2A =
j2
#
+ j2

)

2 − 5
, (5.12)

as here we fit 2 × ( − 1) data points (we fix #sol(0) and )sol(0) to be the data points

taken at C = 0) and we have three fitting parameters (!3, � (f + f̃) and �′(f + f̃)).
The fits of the models are shown in Figs. 5.2 and 5.3. While they both fit the data well,
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1 2 3 4 5 6

�0 (G) 0.50(3) 0.86(3) 1.58(3) 1.70(3) 2.11(3) 2.50(3)

Δ (mG) 6(12) 16(8) 12(7) 3(10) 18(12) 15(11)

Table 5.1. Newly detected Feshbach resonances. The locations �0 and widths Δ of the
resonances were determined by fitting Eq. (5.14) to the data taken at 1.5 µK. The
width of the resonance is defined as the full width at half maximum (FWHM).

the non-extended model gives j2A = 0.68 and the extended model gives j2A = 1.53. This

means that both models work well for predicting the atom number, but additionally we

are able to reproduce the temperature evolution with the extended model.

Remember that the comparison of these models is not like-for-like, as we use the

extended model to predict both the atom number and the temperature, while for the non-

extended one we use the measured temperatures directly. This means that the extension

predicts twice as many data points at the expense of two additional fit parameters. While

secondary collisions do not yield a detectable difference in atom loss,⁸ we found their

contribution was essential to take into account for modelling the temperature evolution.⁹

5.3.4 Loss spectrum

Let us now discuss the spectrum of three-body coefficients. Figure 5.4 shows the meas-

ured three-body coefficients as a function of the magnetic field at various temperatures.

Distinctive peaks in the coefficient represent a high atom loss, associated with Feshbach

resonances. We observed that the position and width of the resonances change with

temperature, and to explore this, !3 was measured at a range of initial cloud temperatures.

In Fig. 5.4, we show the data for initial temperatures of 0.5 µK, 1.5 µK and 4 µK, where

colours ranging from dark to light denote a change in temperature from cold to hot.

For 166Er, Feshbach resonances and associated loss featureswere reported¹⁰ at 0.02(5) G,

3.04(5) G and 4.028G, for magnetic fields below 4G [170]. In our measurements, we

identified six further features, whose position and width are listed in Table 5.1, for an

initial cloud temperature of 1.5 µK.

⁸ The two models give an !3 within 2.4% of each other, while the error on the fitted value is 12%.
⁹ It is worth noting that the extended model reaches j2A = 1.15 on the # (C) graph alone and j2A = 2.67
on the ) (C) graph alone.

¹⁰ The authors of Ref. 170 confirmed that the location of the highest resonance is 4.028G and not 4.208G,
as can be seen from Fig. 3 of Ref. 170 (private communication). Furthermore, it is worth noting that
Feshbach resonances were also reported at 0.121(1) G, 0.244(1) G, 0.366(1) G and 0.490(1) G [169], but
these were later retracted [126].
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5.3.5 Temperature dependence

To explore the temperature dependence further, we measured !3 around the newly

discovered resonance at 0.86(3) G for seven different initial temperatures, as shown in

Fig. 5.5. As well as broadening with increasing temperature, the peak of !3 shifts to

higher � and decreases in amplitude.¹¹ To understand how temperature affects !3, let us

consider its dependence on the trimer collision energy �3 and magnetic field �. This can

be modelled by [69]

!3(�3, �) =
48c2ℏ5

`33�
2
3

(2λ + 1)Γ(�3)Γbr
(�3 − ` (� − �0))2 + Γ2tot(�3)/4

, (5.13)

where Γ(�3) = �λ�
λ+2
3 , Γbr, ` and �0 are the entrance channel energy width, the trimer

decay rate, the relative magnetic moment of the trimer and the entrance channel, and

the position of the resonance, respectively. Furthermore, `3 = </
√
3 is the collisional

reduced mass, Γtot = Γ(�3) + Γbr and λ is the non-negative integer associated with the

relative orbital angular momentum of the collision. We note that the long-range character

of the dipole–dipole interaction allows non-B-wave entrance channels even at ultracold

temperatures. At a particular temperature ) , the collision energy �3 is sampled from the

Boltzmann distribution. Therefore, the measured !3 is, in fact, an averaged value [69]:

!3(), �) =
1

2(:�) )3
∫ ∞

0
�2!3(�, �)4−�/:�) d� . (5.14)

In general, this integral cannot be solved analytically, so it was truncated at �/:�) = 10

(an energy much higher than the average energy 3:�) ) and evaluated numerically.

We found that our data were described well by a fit using λ = 2, denoting a 3-wave

entrance channel [261, 262], shown in Fig. 5.5(a).¹² We also show the dependence of the

full width at half maximum of the resonances as a function of temperature in Fig. 5.5(b),

and we found the width grew linearly with temperature. (This behaviour was confirmed

for the other newly detected peaks as well.) Finally, we show the peak height as a function

of temperature in Fig. 5.5(c), we observed these decayed with temperature.

¹¹ The peak position is also affected by the ODT light intensity, as described in Ref. 107, but this is not
discussed in this thesis.

¹² Note, however, that other properties of this resonance point towards an B-wave character, as described
in Ref. 107.
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Figure 5.5. Temperature dependence of a Feshbach resonance. (a) The three-body loss
coefficient !3 is shown as a function of the magnetic field � around the newly
discovered Feshbach resonance at 0.86(3) G for seven different initial temperat-
ures (1.5 µK, 3 µK, 4 µK, 6 µK, 8 µK, 10 µK and 12 µK). The colours ranging from
darker to lighter represent temperature variation from colder to hotter samples.
Markers are the fitted loss coefficients !3 with their errors, and lines of the
same colour are the corresponding fits for a3-wave entrancechannel.The peak
of the resonance shifts to higher �-field values as the temperature increases.
(b) The width (full width at half maximum) of the resonance against temperat-
ure. Marker colours correspond to the temperatures in (a). The width increases
linearly with temperature (dashed line). (c) The peak value of !3 against tem-
perature. Marker colours correspond to the temperatures in (a). The peak
decreases with increasing temperature, the dashed line is a guide to the eye.
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Characterisation of three-body loss in 166Er
and optimised production of large Bose–Einstein condensates

Milan Krstajić,∗ Péter Juhász,∗ Jiří Kučera,∗ Lucas R. Hofer, Gavin Lamb, Anna L. Marchant,† and Robert P. Smith‡
Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom

Ultracold gases of highly magnetic lanthanide atoms have enabled the realisation of dipolar quantum droplets
and supersolids. However, future studies could be limited by the achievable atom numbers and hindered by high
three-body loss rates. Here we study density-dependent atom loss in an ultracold gas of 166Er for magnetic fields
below 4 G, identifying six previously unreported, strongly temperature-dependent features. We find that their
positions and widths show a linear temperature dependence up to at least 15 µK. In addition, we observe a weak,
polarisation-dependent shift of the loss features with the intensity of the light used to optically trap the atoms.
This detailed knowledge of the loss landscape allows us to optimise the production of dipolar BECs with more
than 2 × 105 atoms and points towards optimal strategies for the study of large-atom-number dipolar gases in the
droplet and supersolid regimes.

I. INTRODUCTION

Precise knowledge and control of the nature and strength
of interparticle interactions have been a key factor in the suc-
cess of using degenerate ultracold-atom samples for studying
many-body quantum phenomena. The application of a mag-
netic field close to a Feshbach resonance is a highly versatile
and convenient tool for tuning the sign and strength of 𝑠-
wave contact interactions that typically dominate in ultracold
gases [1]. However, approaching a Feshbach resonance also
leads to the enhancement of (detrimental) three-body processes,
which result in atom loss and heating [2]. Knowing the loc-
ation of Feshbach resonances and quantifying the associated
loss features is thus essential for designing and optimising
ultracold-atom experiments.

The realisation of ultracold samples of highly magnetic er-
bium [3] and dysprosium atoms [4], which interact via both
long-range, anisotropic dipole–dipole interactions and tune-
able contact interactions, has led to the discovery of dipolar
quantum droplets [5–7] and a supersolid phase [8–10], which
simultaneously exhibits a global phase order and a spontaneous
spatial density modulation. While these first experiments were
carried out in cigar-shaped traps leading to (relatively simple)
one-dimensional (1D) spatial ordering, more recently droplet
arrays and supersolids with two-dimensional (2D) ordering
have also been observed [11, 12]. Theoretical works predict a
plethora of novel patterns in 2D systems, including so-called
honeycomb, labyrinthine and pumpkin phases [13–17]. How-
ever, reaching these exotic states requires degenerate samples
with higher atom numbers than those used in these experiments
so far (1.4 × 105 [10]).

The maximal achievable atom number in an experiment is
often restricted by three-body loss processes, which limit the
efficiency of evaporative cooling close to degeneracy and can
greatly reduce the gas lifetime at (or while approaching) the
desired 𝑠-wave scattering length. Moreover, in order to map

∗ M. K., P. J. and J. K. contributed equally to this work.
† Present address: STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX,

United Kingdom
‡ robert.smith@physics.ox.ac.uk

out the parameter space of exotic dipolar phases, one needs
to tune the relative strength of the contact and dipole–dipole
interactions by controlling the strength of the magnetic field.
The precise knowledge of the loss landscape as a function of
the field strength is therefore paramount. Here we carefully
characterise three-body loss in 166Er for magnetic fields be-
low 4 G, revealing the presence of six previously unreported
resonant loss features which display a strong temperature de-
pendence. In light of this, we describe our optimised procedure
for the production of 166Er Bose–Einstein condensates (BECs),
containing more than 2 × 105 atoms.

II. THREE-BODY LOSS MEASUREMENTS

In alkali atoms the (number) density of Feshbach resonances
is typically between 0.01 G−1 and 0.1 G−1 [1]. However, in
magnetic lanthanides, including erbium and dysprosium, the
anisotropy of the van der Waals and the dipole–dipole inter-
action potentials leads to coupling between many scattering
channels and consequently to an abundance of Feshbach res-
onances [18–21], some of which show a strong temperature
dependence [19, 22, 23]. Here we focus on 166Er for magnetic
fields below 4 G, where Feshbach resonances and associated
loss features have been reported at 0.02(5) G, 3.04(5) G and
4.028 G [24].

For our measurements we prepare an ultracold, spin-polarised
sample of 166Er in an (approximately harmonic) optical dipole
trap (ODT) formed from 1030 nm laser light. The experimental
sequence is described in Sec. III, and the trap and gas parameters
for all our loss measurements are given in the Supplemental
Material [25]; here we only note that the final stage of cooling
is achieved by evaporation in the ODT, with the temperature of
the atom cloud controlled by the ODT depth. To produce clouds
at different temperatures, we interrupt the normal evaporation
sequence at different times and ramp up the depth of the ODT
over 100 ms to prevent any further evaporative cooling (and
associated atom loss) during our measurements. We initiate the
loss measurements by quenching the magnetic field 𝐵 [26] to
the desired value in < 10 ms. To avoid ramping through wide
resonances, for measurements above 3 G we evaporatively cool
at 3.8 G, whereas for measurements below 3 G we cool at 1.4 G.

mailto:robert.smith@physics.ox.ac.uk
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FIG. 1. Three-body loss in 166Er. (a, b) Time evolution of the atom number 𝑁 and temperature 𝑇 , respectively, of a thermal cloud of 166Er atoms
at 𝐵 = 2.7 G with an initial temperature of 𝑇𝑖 = 0.5 µK. The shading denotes the region in which 𝑇 is within 40% of 𝑇𝑖 ; in this region we fit
𝑁 (𝑡) based on Eq. (2) to determine 𝐿3 (solid line, see text). (c) Extracted three-body loss coefficients (𝐿3) for the different initial temperatures
𝑇𝑖 = {0.5, 1.5, 4} µK (blue, magenta and yellow points, respectively). In addition to the three previously identified Feshbach resonances (solid
vertical lines), we identify six new loss features (dotted vertical lines). These new features show a noticeable temperature dependence; as 𝑇𝑖
increases, the peaks shift to higher 𝐵 and their widths also increase.

We use absorption imaging after a time-of-flight to measure the
atom number 𝑁 and temperature 𝑇 as a function of the time 𝑡
the atoms are held in the trap (at a given 𝐵). Examples of these
𝑁 (𝑡) and 𝑇 (𝑡) curves are shown in Figs. 1(a) and 1(b); here the
initial temperature 𝑇𝑖 = 0.5 µK and 𝐵 = 2.7 G.

Let us first consider atom loss. As the atoms are prepared in
the lowest Zeeman state at temperatures much lower than the
sub-level splitting (≈ 78 µK G−1), two-body (spin relaxation)
loss processes are energetically suppressed. The evolution of
the atom number density in thermal samples can therefore
be described by a combination of one- and three-body loss
terms [2],

¤𝑛(r) = −𝑛(r)
𝜏1

− 𝐿3𝑛
3 (r) , (1)

where 𝜏1 is the one-body lifetime (set by e.g. collisions with
background gas atoms in an imperfect vacuum), 𝐿3 is the three-
body loss coefficient and 𝑛(r) is the atom number density. For
a thermal cloud (well above the BEC transition temperature),
the atomic density distribution in a harmonic trap is Gaussian
and Eq. (1) can be written as [2]

¤𝑁
𝑁

= − 1
𝜏1

− 𝐿3

(
𝑚�̄�2

2
√

3𝜋𝑘𝐵𝑇

)3

𝑁2, (2)

where 𝑚 is the atomic mass, �̄� is the geometric mean of the
trapping frequencies and 𝑘𝐵 is the Boltzmann constant. The
trapping frequencies were measured separately by exciting the
cloud centre-of-mass oscillations in the three perpendicular
directions and 𝜏1 was independently determined to be 𝜏1 =
33(1) s from measurements of low-density clouds for which
three-body loss is negligible.

To determine 𝐿3 (𝐵) from our 𝑁 (𝑡) measurements, we fit
the numerical solution of Eq. (2) to our data [see solid line in

Fig. 1(a)] using the corresponding measured 𝑇 (𝑡) as an input.
We only fit our data within the time interval over which the
temperature stays within 40% of its initial value [gray shaded
region in Figs. 1(a) and 1(b)] to limit any systematic errors
arising from either (i) evaporative atom loss due to the finite
trap depth or (ii) the fact that 𝐿3 may depend on 𝑇 [27].

Regarding the heating of the atom cloud [Fig. 1(b)], this
can be understood to be due to two main processes. First, the
loss rate is higher in the central (higher density) part of the
trap, preferentially removing atoms with energy lower than the
average energy in the cloud, leading to ‘anti-evaporation’ [2].
Second, the products of the three-body collision can have
significant kinetic energy (acquired due to the released binding
energy when two atoms form a molecule), which may be
partially deposited in the cloud via secondary collisions.

Figure 1(c) shows the measured three-body coefficient as a
function of the magnetic field for initial temperatures of 0.5 µK,
1.5 µK and 4 µK. In addition to the Feshbach resonances already
reported [solid vertical lines in Fig. 1(c)], we observed six ad-
ditional loss features (dotted vertical lines). These loss features
both broaden and shift to higher 𝐵 with increasing temperature.
We note that at temperatures below 1 µK, where most previous
measurements were performed [18, 24], these features become
very narrow and can easily be missed.

To explore the temperature dependence further, we measured
𝐿3 as a function of 𝐵 around the newly discovered resonance
at ≈ 0.86 G for several additional 𝑇𝑖 values [see Figs. 2(a)–(c)].
Given the asymmetric shape of the loss features, for each 𝑇𝑖
data series, 𝐿3 (𝐵) was fitted with a heuristic skewed Gaussian
curve of the form

𝐿3 (𝐵) = 𝐴𝑒
− (𝐵−𝐵𝑐 )2

2𝜎2

(
1 + erf

(
𝛼(𝐵 − 𝐵𝑐)√

2𝜎

))
+ 𝐶 , (3)
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FIG. 2. Temperature dependence and light-shift of the loss feature at ≈ 0.86 G. (a) 𝐿3 as a function of 𝐵 for several decay series with different 𝑇 .
Markers are experimental data points (with 𝐿3 extracted in the same way as in Fig. 1) and lines are skewed Gaussian fits [see Eq. (3)]. (b) Peak
width Δ as a function of 𝑇 . The line is a linear fit to the data and has a slope of 6.2(3) mG µK−1 and an intercept which is consistent with zero.
(c) Peak position as a function of 𝑇 . The linear fit (line) has a slope of 2.0(3) mG µK−1 and an intercept of 861(1) mG. (d, e) Light-shift of the
loss resonance for linearly polarised light with the polarisation vector E parallel and perpendicular to the dipole orientation, respectively. For
both, we plot the normalised loss (see text) for clouds that are prepared at the same temperature (2 µK) in 1030 nm single-beam ODTs with a
factor of four difference in laser intensity (filled points show the higher intensity); for E ∥ B there is a noticeable light-shift in the resonance
position, while the magnitude and width of the feature remains unchanged . Note that the data in (b) and (c) were corrected for this light-shift
effect.

where 𝐵𝑐, 𝜎, 𝛼, 𝐴 and 𝐶 are fitting parameters.
Figures 2(b) and 2(c) show, respectively, the peak width Δ

(taken as twice the variance of the skewed Gaussian) and
𝐵max [the location of the maximum of 𝐿3 (𝐵)] as a function
of the average temperature 𝑇 of the decay series [28]. We
observe that Δ grows linearly with temperature and so we
parameterise the width of the resonance via a linear function,
Δ = Δ0 + (dΔ/d𝑇) 𝑇 , fitted to the data [solid line, Fig. 2(b)].
Note that all our extracted Δ0 values are consistent with zero
within our ±3 mG error bounds. Similarly, 𝐵max also grows
(approximately) linearly with temperature and so we fit the
data using 𝐵max = 𝐵0 + (d𝐵max/d𝑇) 𝑇 . The parameters of both
these fits are tabulated in Table I for all the newly detected loss
features. We also note that for the 0.86 G feature the maximum
𝐿3 decreases with increasing temperature within our measured
range [see Fig. 2(a)], however, for other peaks this trend is
inconclusive.

The magnetic field dependence of the loss properties is due
to the differential Zeeman shift arising from the difference
in magnetic moments (𝛿𝜇) between the different scattering
channels. However, it is also possible for light fields to exert
similar differential shifts [29–32] due to the difference in
polarisabilities (𝛿𝛼) between scattering channels, which can,
in some cases, also have vectorial and tensorial parts [33, 34].
To check if the optical field from our ODT causes such an
effect, we measured the loss features for thermal clouds at
the same temperature (2 µK) but for traps with two different
light intensities (powers) and for the polarisation of the ODT
light E either parallel (E ∥ B) or perpendicular (E ⊥ B) to
the external magnetic field (and hence the spin-polarisation

of the atoms) [35]. Data for the 0.86 G resonance is shown in
Figs. 2(d) and 2(e); here, to identify the peak position we simply
performed a two-point loss measurement [36]. For E ∥ B we
observe a significant (positive) shift of the loss feature with
light intensity, whereas for E ⊥ B the effect is much less
noticeable and (if anything) has the opposite sign. Assuming
that the resonance position shifts linearly with light intensity,
one can extract a constant of proportionality between the light
intensity 𝐼 and the resonance peak shift which gives d𝐵0/d𝐼
for both orientations. These are tabulated in Table I for all the

𝐵0
d𝐵max

d𝑇
dΔ
d𝑇

(
d𝐵0
d𝐼

)
E∥B

(
d𝐵0
d𝐼

)
E⊥B

(mG) (mG µK−1) (mG µK−1) (G µm2 W−1) (G µm2 W−1)

498(2) 3.0(4) 8.6(2.2) 1.5(3) -0.5(2)
862(2) 1.9(3) 6.2(3) 1.7(5) -0.2(2)

1571(4) 4.3(7) 4.6(1.5) 0.7(2) 0.1(3)
1705(3) 2.7(7) 5.3(1.0) 1.2(6) -0.1(3)
2102(3) 5.6(7) 7.8(8) 2.6(9) 0.1(9)
2497(7) 3.8(1.6) 6.1(5) 1.9(3) 0.0(4)

Table I. Newly detected loss features and their properties. The position
of the resonance 𝐵0 for 𝑇 → 0 (and 𝐼 → 0) and the rate of change of
the peaks’ position (d𝐵max/d𝑇) and width (dΔ/d𝑇) with temperature,
obtained via a linear fit to the finite-temperature datasets. The shift in
the resonance position with the intensity of linearly polarised 1030 nm
laser light (d𝐵0/d𝐼) is also tabulated, for dipoles aligned along (E ∥ B)
and perpendicular to (E ⊥ B) the light polarisation.
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newly detected loss features.
We note that, for all the loss features, the fact that the

difference in the slopes d𝐵0/d𝐼 between the two orthogonal
light polarisations is of similar magnitude to either of the
individual slopes suggests that the tensorial part of 𝛿𝛼 is of a
similar magnitude to its scalar part. More quantitatively, using
𝛿𝛼 = 2𝜀0𝑐𝛿𝜇 d𝐵0/d𝐼, we find 𝛿𝛼 ∼ 1 a.u. using 𝛿𝜇 ∼ 𝜇𝐵,
which is the same order of magnitude as the tensorial part
of the ground state polarisability at the wavelength of our
ODT [33].

We now compare our findings to the predictions of a ‘resonant
trimer’ model previously proposed in the context of temperature-
dependent loss features in the lanthanides [19]. In this model
the loss features are caused by resonances with ‘closed channel’
three-atom (trimer) bound states. We note that as the resonance
is with a trimer (rather than a two-atom bound state as in
more conventional Feshbach resonances), one would not expect
these resonances to affect the (two-body) 𝑠-wave scattering
length [37].

Within this model, some simple scalings emerge for 𝑘𝐵𝑇 ≫
Γbr ≫ Γ(𝐸), whereΓbr is the trimer decay rate (into an atom and
dimer pair) and Γ(𝐸) is the collision energy dependent width of
the trimer resonance. In this regime, one finds that 𝐵max − 𝐵0 =
(𝜆 + 2)𝑘𝐵𝑇/𝛿𝜇, Δ = 2

√
3 + 𝜆𝑘𝐵𝑇/𝛿𝜇 and 𝐿3 (𝐵max) ∝ 𝑇𝜆−1,

where 𝜆 is related to the orbital angular momentum of the
entrance channel (𝜆 = 0, 2 for 𝑠-wave and 𝑑-wave respectively).

The first thing to note is the qualitative agreement between
these predictions and our observed temperature dependencies
of 𝐵max and Δ. More quantitatively, the ratio of dΔ/d𝑇 and
d𝐵max/d𝑇 is predicted to only depend on 𝜆 and be equal to 1.73
and 1.12 for 𝜆 = 0 and 2, respectively. For the 0.86 G resonance
this ratio is 3.2(5), which is closer to the 𝑠-wave prediction [38].
An 𝑠-wave assignment would also be consistent with the fact
that the maximum 𝐿3 drops with temperature. For the other
resonances, the larger error bars and the inconclusive trends of
𝐿3 (𝐵max) against 𝑇 make any 𝜆 assignment difficult.

Finally, we note that, despite the consistency of the 0.86 G
feature with the resonant trimer model, we cannot rule out
alternative models [22] which also predict regimes with linear
𝑇-dependence of both 𝐵max and Δ, especially for the other less
well-mapped loss features.

III. OPTIMISED BEC PRODUCTION

To produce erbium BECs, we employ standard laser cooling
and trapping techniques and then use our knowledge of 𝐿3 (𝐵)
to inform and optimise the evaporative cooling sequence.

In the initial steps, similarly to Ref. [3], an atomic beam
emerging from a high-temperature effusion cell oven is slowed
down using a Zeeman slower operating on the broad transition
at 401 nm. The slow atoms are then loaded into a narrow-
line magneto–optical trap (MOT) operating on the atomic
transition at 583 nm. We typically capture 108 atoms after
loading the MOT for 12 s. Afterwards, we ramp to a compressed
MOT (cMOT) configuration in 600 ms, where reducing the
light detuning and intensity causes simultaneous compression
and cooling, resulting in a spin-polarised atomic sample at a
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FIG. 3. Optimising evaporation. (a) Schematics of the crossed-beam
optical dipole trap. The horizontal (ODT1) beam can be enlarged
by dithering it with an AOM. The cross (ODT2) beam propagates
at 15◦ to the vertical. (b) After loading the ODT from the cMOT,
the evaporation sequence consists of three parts. During phase I,
the power in ODT1 is lowered in parallel with ramping down the
dithering. In phase II, the atoms are drawn into the crossing with
the second ODT beam as the cooling continues. Finally, in phase III,
with atoms residing entirely in the crossed region, we decompress the
trap by ramping down ODT2 and dithering the ODT1 beam. 𝑃1 and
𝑃2 correspond to the power in ODT1 and ODT2, respectively, and
the dithering amplitude is shown in arbitrary units. (c) Evaporation
efficiency 𝛾 (see text) as a function of magnetic field. The dashed
vertical lines show the 𝑇 → 0 positions of the loss features. The
shaded regions denote optimal regions for evaporation and 𝐵 = 1.4 G,
which we use during evaporation, is indicated by a solid vertical line.

temperature of 10 µK.
To cool the sample further, we transfer the atoms into an

ODT, broadly following previous protocols, in which we per-
form evaporative cooling. As shown in Fig. 3(a), the ODT is
implemented using two crossed, far-detuned beams at 1030 nm,
which we call ODT1 and ODT2. Initially, the 21 µm × 24 µm
waist ODT1 beam is superimposed onto the cMOT, with a
total power of 21 W and with a 50 kHz spatial dithering applied
using an acousto-optic modulator (AOM) [39], which broadens
the horizontal (21 µm) waist by a factor of two. A 40 ms overlap
of the dithered ODT1 beam with the cMOT results in 1.8× 107

atoms being trapped in ODT1 at a temperature of ≈ 40 µK.
The next step is to evaporatively cool the atoms; it is here

where a consideration of three-body losses becomes important.
Maximising the evaporation efficiency requires minimising
losses while still maintaining a sufficient rate of elastic two-
body collisions which facilitate evaporation. To minimise three-
body losses in the range of temperatures encountered during
evaporation, one wants to be roughly in the middle of the range
between the two (relatively broad) Feshbach resonances at 0 G
and 3 G. Additionally, one wants to be as far as possible to the
high-field side of any of the loss features, as they both move and
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highest 𝜌0 point in (a), (d, e) a partially condensed cloud, (f, g) a
nearly pure BEC with 2.2 × 105 atoms in the condensate. The dashed
line in the summed density plots represents a fit of the extended Bose
distribution to the thermal component of the cloud, from which the
temperature can be extracted.

broaden towards higher 𝐵 as 𝑇 increases. This points towards
choosing 𝐵 ≈ 1.5 G, on the right of the largest gap between loss
features [see Fig. 1(c)]. On the other hand, the elastic collision
rate, set by the 𝑠-wave scattering length 𝑎𝑠, increases as one
approaches the 3 G resonance from below [24]. This favours
higher 𝐵 and points towards the regions around 2 G and 2.4 G.

To discern the optimal 𝐵 for evaporation, in Fig. 3(c)
we plot the efficiency (𝛾) of the evaporation ramp down to
the point just above condensation as a function of 𝐵. Here
𝛾 = −d(ln 𝜌0)/d(ln 𝑁), where 𝜌0 = 𝑛0𝜆

3
𝑇 is the peak phase-

space density with 𝜆𝑇 =
√︁

2𝜋ℏ2/𝑚𝑘𝐵𝑇 the thermal de Broglie
wavelength. We see that there is indeed an optimal region
around 𝐵 = 1.4 G and so we perform our evaporation there, at
which point 𝑎𝑠 = 73𝑎0 [24]. We note that the region around
2 G is also suitable for evaporation, as although it suffers from
greater three-body loss, it has a larger 𝑎𝑠 ≈ 80𝑎0. This obser-
vation is consistent with the 1.9 G field used previously for
evaporation (see the supplemental material of Ref. [10]).

The evaporation sequence can be split into three stages
[see Fig. 3(b)]. In stage I, in which the ODT2 contributes
negligibly to the trapping, we simultaneously reduce the ODT1
power and ramp down its dithering. This leads to evaporation
and a change in the trap aspect ratio, but avoids too much
decompression. At the start of stage II, the ODT2 beam, with a
waist of 140 µm × 33 µm and an initial power of 2.4 W, starts
to have a noticeable effect and, as the cooling continues, the
remaining atoms converge into the crossing of the ODT beams.
In stage III, we employ the novel approach of broadening the
ODT1 beam again by ramping up the dithering amplitude

alongside significantly decreasing the power of ODT2. This
lowers the trap depth and all trapping frequencies, and thereby
reduces the atomic density and hence the rate of inelastic
three-body collisions relative to the elastic two-body ones.

In Fig. 4(a) we show how the peak density 𝑛0 and the peak
phase-space density 𝜌0 evolve with the falling 𝑁 during the
evaporation sequence. This highlights the growing density
and justifies the need for our stage III decompression: at the
end of stage II we reach 𝑛0 = 3 × 1020 m−3 which gives a
characteristic three-body lifetime at the centre of the cloud of
only 1/𝐿3𝑛

2
0 ≈ 1 s. We achieve efficient evaporation throughout

the three stages, maintaining a steady increase of 𝜌0 with
efficiency 𝛾 = 3.1(1); this results in the onset of condensation
being reached with 𝑁 = 8 × 105 atoms and at a temperature
of 500 nK. Finally, by evaporating further we achieve a nearly
pure condensate with 2.2 × 105 atoms [see Figs. 4(b)–(g)].

IV. CONCLUSION

In conclusion, we have identified six new strongly
temperature-dependent three-body loss features in 166Er below
4 G. Both the position and width of these loss features increase
linearly with temperature for 0.5 < 𝑇 < 15 µK; this is broadly
consistent with a ‘resonant trimer’ model previously put forward
to explain some loss features in lanthanide atoms [19].

Using our knowledge of the loss landscape to optimise the
evaporation procedure enabled the production of large BECs of
2.2×105 atoms, providing a good starting point for the investig-
ation of ultracold dipolar physics. Furthermore, these findings
will enable the optimisation of atom numbers in existing and
future experiments, and guide the way towards the experi-
mental realisation of more exotic states, including honeycomb,
labyrinthine and pumpkin phases. Moreover, precise knowledge
of the three-body loss coefficient could enable the measure-
ment of the atom number density, crucial for determining the
structure of quantum droplets.
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6
Stability of a dipolar quantum gas in
power-law potentials

Pembroke College, Oxford. Per pale Azure and Gules,
three lions rampant two and one Argent, on a chief per
pale Argent and Or, in the first a rose Gules seeded Or
barbed Vert, in the second a thistle proper.

Homogeneous quantum gases open up new possibilities for studying many-body

phenomena and have now been realised for a variety of systems. For gases with

short-range interactions the way to make the cloud homogeneous is, predictably,

to trap it in an ideal (homogeneous) box potential. In this Chapter, we show that

creating a close-to-homogeneous dipolar gas in the roton regime, when long-range

interactions are important, actually requires trapping particles in soft-walled (in-

homogeneous) box-like potentials, as hard walls trigger density oscillations near

the wall even when the bulk of the system is not in the roton regime. We character-

ise how the optimum density distribution depends on the shape of the trapping

potential and find it is controlled by the trap wall steepness.

6.1 Introduction

Traditionally, ultracold atomic gases are confined in harmonic trapping potentials,

realised by Gaussian laser beams or magnetic traps. However, this does not reflect the con-

tinuous translational symmetry that many systems possess. This problem was overcome

129
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by placing the atoms in a so-called optical box potential [45, 47], which had much success

in systems with purely contact interactions [47]. As making a condensate homogeneous

almost invariably makes the interpretation of experiments easier and the comparisons

with theory more direct, this cleared the way for many interesting topics to be examined,

including the dynamics of spontaneous symmetry breaking at a phase transition [49], the

dynamics of strongly-interacting Bose–Einstein condensates (BECs) [263], turbulence

in a quantum gas [48, 264], and first- and second-sound in a superfluid [265].

In dipolar experiments so far, the dipolar gases were confined in anisotropic, harmonic

potentials; theoretically, most attention has focused on such fully harmonically trapped

gases [80, 82, 209, 210, 212, 213, 253, 254, 256, 257, 266–272] and on homogeneous condens-

ates [268, 273–278] which are harmonically confined along the polarisation direction but

are unconfined in at least one of the other two (in-plane) directions. The natural way to

create homogeneous conditions experimentally is to make the in-plane confinement box-

like. Such traps are yet to be used for experimentally studying many-body phenomena in

dipolar quantum gases, but theoretical studies involving ideal box traps have revealed

non-trivial effects such as the accumulation of density near the box walls [279] and novel

supersolid crystal structures [280].

An interesting consequence of the anisotropic nature of the dipolar force is the

strong dependence of the stability of a trapped BEC on the trapping geometry and the

interaction strength. As each atom in the cloud attracts other atoms within a conical

domain around the dipole axis, dipolar interactions can render the cloud unstable. As we

have seen in §2.3.3, this is the case for an unconfined, homogeneous dipolar gas, and also

when the attractive component of the dipolar force overpowers the repulsive contact

interactions, the confining potential and the quantum pressure. The case of flat (2D-like)

BECs is particularly interesting, where strong dipolar interactions introduce a dip in the

excitation spectrum at a finite momentum, the so-called ‘roton minimum’ [71, 72, 193,

194]. This leads to exotic phenomena, e.g. supersolidity [80, 205–213], a counter-intuitive

state of matter that combines the dissipationless flow of a superfluid with the crystal-like

periodic density modulation of a solid [214], achieved via the self-organisation of the

excited dipolar quantum gas into quantum droplets [76, 77, 81, 215].

The point at which the roton minimum leads to instability has been predicted for

infinite and homogeneous quasi-2D [273] and quasi-1D [268] systems. Dipolar clouds in

cylindrical harmonic traps have also been extensively investigated: BECs in more oblate

traps with respect to the axis of magnetic polarisation tend to be more stable [193, 281,

282], which can be understood by realising that the more oblate the trap is, the more the

trapping potential squishes the atoms, i.e. the more they are forced to be in a side-by-side

configuration where the DDI is repulsive (as opposed to a head-to-tail configuration
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where the DDI would be attractive). This external force ensures that purely dipolar BECs

can be made stable in oblate traps, where they can withstand even some attractive contact

interactions [66]. The DDI also has notable consequences on the shape of the clouds. It

was found that in a harmonic trap, clouds can assume a concave, ‘red blood cell’-type

density profile [266], and perturbations in the trapping potential can induce ‘roton-like’

density oscillations [267].

In this Chapter, I investigate the effect of the dipolar interaction on the stability and

uniformity of a dipolar quantum gas confined in a box-like trap, and compare these

results to the case of an infinite system. The aim is to explore the experimentally relevant

parameter-space and find what parameters yield a system closest to the (solvable) infinite

case close to collapse, in terms of uniformity of the density distribution and the strength

of the largest possible dipolar interaction before collapse. While infinite systems cannot

be produced in reality, creating a large trapped system with similar properties to the

infinite system would enable us to check the theory against measurements.

Investigations are restricted to a dipolar gas cylindrically trapped along the radial (A )

direction in a purely power-law (A? ) potential, polarised and harmonically trapped along

the axis of the cylinder (I). This is an experimentally-motivated choice, as it smoothly

interpolates between a harmonic potential and a perfect box trap, and is a good way

to characterise a non-perfect box potential [45]. To be able to find the ground state, we

numerically solve the dipolar Gross–Pitaevskii equation (Eq. (2.69)) and test the solutions

for dynamical stability by solving the Bogoliubov–de Gennes (BdG) equations (Eqs. (2.78)

and (2.79)). Given the cylindrical symmetry of our system, the 3D simulation (G,~, I) can

be reduced to a 2D one (A, I). However, as the angular dependence is explicitly assumed

to be non-existent, this prevents the detection of angular instability so the calculated

ground states need to be tested for angular instabilities using the BdG approach. A similar

method was used to explore stability in harmonic traps [266, 282], but also to investigate

properties of supersolids [82, 254, 257, 280] and quantised vortices [270].

The simulation package consists of programs for finding the ground state by solving

the GPE in a cylindrical geometry and for its subsequent testing for angular stability using

the BdG equations. To solve the GPE, both the imaginary time propagation method [283–

285] and the conjugate gradient method [286–289] were implemented. The program is

implemented in Python [290], but takes advantage of several fast, low-level libraries. Data

supporting the results presented in this chapter and the relevant publication, generated

by this program, are openly available in Ref. 291.

The results of the simulation provide some interesting considerations that are relevant

for the implementation of the optical box trap in our experiment. In particular, we showed

that a hard wall induces large density oscillations in the cloud, which makes it both less
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stable and less homogeneous. A less steep wall is better suited to achieve a homogeneous

condensate, as compared to either a harmonic trap or a box trap with hard walls.

Section 6.2 explains the theoretical background of these calculations. However, to be

able to actually solve the equations, various numerical techniques are required, which are

presented in §6.3 (understanding these is not necessary for following the results, but are

presented here for completeness). Results and an outlook to future directions are discussed

in §6.4. Finally, as all continuous transformations need to be calculated on discrete grids,

the discrete equivalents of various continuous transformations are given in Appendix C.

6.2 Theory

6.2.1 Dimensionless Gross–Pitaevskii equation

The starting point of our discussions is the Gross–Pitaevskii equation Eq. (2.69). A

dipolar Bose–Einstein condensate with # atoms of mass<0 , magnetic dipole moment `

and B-wave scattering length 0B can be described by the macroscopic wave functionΨ(r, C).
In the Hartree–Fock approximation Eq. (2.73), Ψ(r, C) =

√
#k (r, C), where k (r, C) is the

normalised single-particle wave function (i.e.
∫
+
|k (r, C) |2 d3r = 1). Both the ground state

and the dynamics of the condensate are described by the time-dependent Gross–Pitaevskii

equation (GPE), which we can write in terms ofk (r, C):

8ℏ
mk (r, C)
mC

=

(
− ℏ2

2<0

∇2 ++trap(r) +
4cℏ20B#
<0

|k (r, C) |2

+#
∫
+

*dd(r′ − r) |k (r′, C) |2 d3r′
)
k (r, C) , (6.1)

where the dipolar interaction potential *dd(r′ − r) between two magnetic dipoles ` at

r and r′, both aligned along the I-axis, is given by Eq. (2.14). Note that here we neglect

beyond-mean-field effects (quantum fluctuations), as their contribution is negligible up

to the typical densities required for mean-field collapse; they only become significant

at higher densities when they can arrest the collapse, leading to quantum droplets or

supersolidity [77]. Also, while each atom only really interacts with # − 1 other atoms,

given in the assumptions behind the GPE # is very large, it makes no practical difference

to write # instead of # − 1 in the equation.

The ground state also satisfies the time-independent GPE, which in terms of k is
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written as

`2k (r) =
(
− ℏ2

2<0

∇2 ++trap(r) +
4cℏ20B#
<0

|k (r) |2

+#
∫
+

*dd(r′ − r) |k (r′) |2 d3r′
)
k (r) , (6.2)

where `2 is the chemical potential. As we have already noted, the ground state must have

a constant (but otherwise arbitrary) phase [292]. One can choose this phase to be 0 and

in the following with this choice we will choose the ground state to be real.

Equation (6.1) can be made dimensionless by introducing (arbitrary) units of measure

for length and time, GB and CB , and can be further simplified by the appropriate choice of

these units. The transformation into the dimensionless form can be done via a change of

variables:

r → GB r̃ , C → CB C̃ , k → G
− 3

2
B k̃ . (6.3)

Applying these substitutions to Eq. (6.1) and choosing CB =<0G
2
B /ℏ leads to

8
mk̃ (r̃, C̃)
mC̃

=

(
−1
2
∇̃2 + <0G

2
B

ℏ2
+trap(r) +

4c0B#
GB

��k̃ (r̃, C̃)��2
+#<0`0`

2

4cℏ2GB

∫
+̃

1 − 3 cos2 \

|r̃′ − r̃|3
��k̃ (r̃′, C̃)��2 d3r̃′) k̃ (r̃, C̃) . (6.4)

We can now define the dimensionless contact and dipolar interaction strengths:

6 =
4c0B#
GB

, � =
30dd#
GB

. (6.5)

Finally, by absorbing the numerical coefficients into a dimensionless trapping potential

+̃trap(r̃) =<0G
2
B+trap(r)/ℏ2, and by defining *̃dd(r̃′ − r̃) = (1− 3 cos2 \ )/|r̃′ − r̃|3, we reach

the final, compact form of the time-dependent GPE:

8
mk̃ (r̃, C̃)
mC̃

=

(
−1
2
∇̃2 + +̃trap(r̃) + 6

��k̃ (r̃, C̃)��2 + � ∫
+̃

*̃dd(r̃′ − r̃)
��k̃ (

r̃′, C̃
) ��2 d3r̃′) k̃ (r̃, C̃) , (6.6)

and similarly, the time-independent GPE:

˜̀2k̃ (r̃) =
(
−1
2
∇̃2 + +̃trap(r̃) + 6

��k̃ (r̃)��2 + � ∫
+̃

*̃dd(r̃′ − r̃)
��k̃ (r̃′)��2 d3r̃′) k̃ (r̃) . (6.7)

For brevity later on, we can abbreviate the dipolar interaction potential as Φ̃dd(r̃) =∫
+̃
*̃dd(r̃′ − r̃)

��k̃ (r̃′)��2 d3r̃′.
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+ (I) ∝ I2
I

+ (A ) ∝ A?

A

Figure 6.1. Trap geometry. We consider a gas of dipoles aligned along I which interact
via dipole–dipole and contact interactions, and are confined in a ‘pancake’
trap by a harmonic potential along the axis (I2) and a cylindrically symmetric
power-law potential in the radial direction (A? ). Adapted from Ref. 46.

Given we are only interested in axially symmetric power-law traps along A which are

harmonic along I, we can define

+trap(r) = +trap(A, I) =
1
2
^A? + 1

2
<0l

2
II

2 . (6.8)

We canmake the convenientchoice of GB = ℓI =
√
ℏ/<0lI (the harmonic oscillator length),

which leads to +̃trap(r̃) = +̃trap(Ã , Ĩ) =
(
(Ã/W)? + Ĩ2

)
/2 with W =

(
<0^/ℏ2

)−1/? × ℓ−(1+2/?)I .

Choosing GB = ℓI also means settling on CB = 1/lI , 6 = 4c0B# /ℓI and � = 30dd# /ℓI . We

can then also express energies in units of ℏlI . Increasing W means making the trap along

A wider, i.e. making the condensate more oblate.

To find the ground state and excitations, we will also need to calculate the energy

and the chemical potential. In dimensionless units these are:

�̃

[
k̃

]
=

∫
+̃

(
−k̃ ∗(r̃) ∇̃

2

2
k̃ (r̃) + +̃trap(r̃)

��k̃ (r̃)��2 + 6
2

��k̃ (r̃)��4
+�
2

��k̃ (r̃)��2 ∫
+̃

*̃dd(r̃′ − r̃)
��k̃ (r̃′)��2 d3r̃′) d3r̃ , (6.9)
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˜̀2
[
k̃

]
=

∫
+̃

(
−k̃ ∗(r̃) ∇̃

2

2
k̃ (r̃) + +̃trap(r̃)

��k̃ (r̃)��2 + 6��k̃ (r̃)��4
+�

��k̃ (r̃)��2 ∫
+̃

*̃dd(r̃′ − r̃)
��k̃ (r̃′)��2 d3r̃′) d3r̃ . (6.10)

The latter can be seen by writing Eq. (6.7) as ˜̀2k̃ (r̃) = �̂k̃ (r̃). This means ˜̀2
��k̃ (r̃)��+2 =

k̃ ∗(r̃)�̂k̃ (r̃), which, due to the normalisation of k , leads to ˜̀2 =
∫
+̃
k̃ ∗(r̃)�̂k̃ (r̃) d3r̃ as

written above.

Theoretically, all we need to do to find the ground states is to solve Eq. (6.7). However,

to be able to do that, various numerical techniques are needed, as described in §6.3.

6.2.2 Excitation spectrum

The excitation spectrum of the condensate can be calculated by the direct solution of

the Bogoliubov–de Gennes (BdG) equations [282], Eqs. (2.78) and (2.79). In the following,

we present the dimensionless version of the theory presented in §2.3.3. We can cast the

macroscopic wave function of the excited state into a dimensionless form and write it in

terms of the single-particle wave function,

k̃ (r̃, C̃) =
(
k̃0(r̃) + Xk̃ (r̃, C̃)

)
4−8 ˜̀2 C̃ , (6.11)

where k̃0(r̃) is the ground state (which is chosen to be a real function), ˜̀2 is its chemical po-

tential and Xk̃ is a small perturbation as before.The perturbation is constrained to the form

Xk̃ (r̃, C̃) =
∑
8

(
D̃8 (r̃)4−8l̃8 C̃ + Ẽ∗8 (r̃)48l̃8 C̃

)
, (6.12)

where l8 = l̃8/CB are the frequencies of the excitations (ℏl8 is their energy), and D̃ and

Ẽ are normalised according to #
∫
+̃

(
D̃2 − Ẽ2

)
d3r̃ = 1. This ansatz can be tried in the

(dimensionless) time-dependent GPE Eq. (6.6), leading to the following set of equations

when expanded up to first order in Xk̃ and with terms collected according to frequency

components (4±8l8C ) (cf. Eqs. (2.85) and (2.86)):(
�̂0 − ˜̀2 + �̂

) (
�̂0 − ˜̀2 + �̂ + 2-̂

)
5̃ = l̃2 5̃ , (6.13)(

�̂0 − ˜̀2 + �̂ + 2-̂
) (
�̂0 − ˜̀2 + �̂

)
6̃ = l̃26̃ , (6.14)
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where 5̃ = D̃ + Ẽ , 6̃ = D̃ − Ẽ and the dimensionless operators are �̂0 = −∇̃2/2 + +̃trap and

�̂ 5̃ (r̃) = 6k̃ 2
0 (r̃) 5̃ (r̃) + � 5̃ (r̃)

∫
+̃

*̃dd(r̃′ − r̃)k̃ 2
0 (r̃′) d3r̃′, (6.15)

-̂ 5̃ (r̃) = 6k̃ 2
0 (r̃) 5̃ (r̃) + �k̃0(r̃)

∫
+̃

*̃dd(r̃′ − r̃)k̃0(r̃′) 5̃ (r̃′) d3r̃′. (6.16)

Note that the operators are redefined compared to §2.3.3 (they are cast in a dimensionless

form) and that 6̃ is not the dimensionless version of 6 = 4c0B# /GB as defined in Eq. (6.5)

(which is already dimensionless) but is the dimensionless version of 6 = D − E as defined

in §2.3.3.

Besides calculating excitations, this can also be used to test stability—if any excitation

has an imaginary energy (i.e.l2 < 0) associated with it, the condensate is unstable against

that particular excitation mode. For stable condensates, all of l , D and E are real [282].

Refs. 266 and 282 state that clouds which assume a concave, ‘red blood cell’-shaped ground

state are prone to angular instabilities. This can be understood by realising that in that

case there exists a local maximum in the density of the atoms in the radial direction, which

is extended along the angular direction, and therefore an angular excitation can render

the gas unstable. A direct consequence of this is that energy-minimisation techniques that

do not account for angular degrees of freedom (e.g. the ones we use) will overestimate

the stability boundary in these cases. Therefore, all the calculated candidate ground

states need to be checked using the BdG equations for angular stability. This can also

be performed in a cylindrical coordinate system, given the angular (\ ) dependence of

any excitation can be written as 4−8<\ (< ∈ Z) in a cylindrically symmetric system.

However, excitations corresponding to different phase windings (different orders<) must

be checked separately.

6.2.3 Thomas–Fermi approximation

For the purposes of estimating various properties of the gas, we can make use of

the Thomas–Fermi approximation, Eq. (2.72). In the limit where the trap aspect ratio

(W ) is infinitely large, the gas is practically homogeneous in the radial direction, but still

harmonically trapped along the axial one. In that limit, the findings of Ref. 273 apply,

where they conclude that the dipolar interaction affects the shape of the condensate the

same way as a contact interaction with a scattering length 20dd does. While the nature of

these interactions are very different, due to the infinite nature of the system the direction-

dependence of the dipolar interaction can be integrated out. Therefore, such a condensate

has the same shape as one with an effective scattering length 0eff = 0B + 20dd and in the
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Thomas–Fermi approximation the time-independent GPE, Eq. (6.2), can be written as

`2k (r) =
(
+trap(r) +

4cℏ20eff#
<0

|k (r) |2
)
k (r) . (6.17)

We see this admits the solution

|k (r) |2 = =(r) =

`2−+trap (r)

6eff
if `2 > +trap(r)

0 otherwise
, (6.18)

where we defined 6eff = 4cℏ20eff#/<0 and =(r) = =(A, I) is the 3D single-particle number

density. This is an interesting result—the DDI can be treated effectively as a form of con-

tact interaction in the infinite homogeneous system limit, where the density distribution

does not change if we change 0B or 0dd, as long as 6eff is constant. To find =, we can take

the ansatz

=(A, I) = =0
(
1 − A?

'
?
A

− I2

'2I

)
, (6.19)

where 'A and 'I are called the Thomas–Fermi radii. Substituting this into Eq. (6.17),

enforcing the condition that `2 needs to be constant and that the density is normalised

according to
∫
+
=(r) d3r = 1, we find

'A =

(
26eff=0
^

) 1
?

, 'I =

√
26eff=0
<0l

2
I

, =0 =

(
U (?)

(
26eff
^

) 2
?

√
26eff
<0l

2
I

) −2?
3?+4

, (6.20)

using the definitions of Eq. (6.8) and defining

U (?) =
c

3
2 Γ

(
1 + 2

?

)
Γ
(
5
2 +

2
?

) , (6.21)

taking especial care with the integration limits given the piecewise definition of our

function. Finally, we can now find the areal density distribution

=2D,TF(A ) =
∫ ∞

−∞
#=(A, I) dI = 4

3
#=0'I

(
1 − A?

'
?
A

) 3
2

. (6.22)

In Ref. 273 the authors found that the areal density =2D of a homogeneous gas can

be described by =2D = a (Ydd) × ℏlIℓI/6eff, where the constant of proportionality a (Ydd)
is a (dimensionless) number that only depends on Ydd (a (Ydd) needs to be determined

numerically). They found that a condensate remains stable as long as the areal density
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does not exceed

=crit2D =
ℏlIℓI

6eff
acrit(Ydd) , (6.23)

where the value of acrit(Ydd) is tabulated in Ref. 273. While this result is not directly

applicable to our trapped system as =2D(A ) changes in a confined system even in the

Thomas–Fermi approximation, we can estimate that the stability boundary depends only

on the maximum density (assuming a local collapse). If we therefore take =2D = =2D,TF(0),
then using the results of Eq. (6.20) and putting everything into dimensionless units (using

the convention GB = ℓI), we can write a in the Thomas–Fermi case as

aTF =
=2D,TF(0)6eff

ℏlIℓI
=

4
3U (?)

(
U (?)

2W
6?
4

(
6 + 8c�

3

) ) 4
3?+4 (

6 + 8c�
3

)
(6.24)

for a stable, confined dipolar gas (not necessarily close to collapse). This is helpful as

Ref. 273 gives the stability boundary acrit(Ydd), so we can estimate where the stability

boundary will lie in terms of � from the condition aTF = acrit(Ydd), given ? , W and Ydd.

We can also express theThomas–Fermi radii in dimensionless units, which can be used

to determine the size of the simulation grid (cf. §6.3.5). For a purely dipolar gas these are

'A =

(
3aTF
2

) 2
3?

WℓI , 'I =

(
3aTF
2

) 1
3

ℓI . (6.25)

Finally, we will see that for high-? , high-W boxes the density increases significantly

near the trap wall. This is a consequence of the repulsive (and long-range) nature of the

interaction between side-by-side dipoles and can be understood in the Thomas–Fermi

approximation, in which +̃trap(r̃) + 6 |k (r̃) |2 + �Φ̃dd(r̃) must be constant and equal to the

chemical potential within the cloud (cf. Eq. (6.7)). Note that here we do not assume the

dipolar interaction can be substituted by an effective contact interaction, which is strictly

only true for a condensate unconfined along A . In a sharp-walled trap, the contribution of

the external potential is negligible. However, due to the long-range nature of the dipolar

interactions, if the gas had a homogeneous density distribution, the dipolar term would

be significantly reduced near the wall, so the density needs to increase to compensate.

For less steep traps, the increasing +trap compensates the decay of Φdd and so no density

accumulation occurs near the edge of the trap.

This increase in density is prone to angular excitations. The wavelength of excitations

is characterised by the roton wavelength λrot = 2c/:rot, which is set by the condition

:rotℓI ≈ 1 [193]. To estimate the order< of the lowest-energy angular excitations, one

could expect that the roton wavelength will fit around the rim of the box<crit times, i.e.
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2c'A =<critλrot,<crit ∈ Z. From here, we find

<crit ≈
'A

ℓI
=

(
3aTF
2

) 2
3?

W . (6.26)

This is useful as it gives us an idea of what order < to test for when calculating the

angular BdG spectrum. In practice, we find testing above 1.25<crit is not required. It is

also worth noting that to be able to resolve radial and axial density oscillations, the wave

function should be sampled fine enough to resolve the roton length scale.

6.2.4 Homogeneity

The purpose of creating a box trap is to obtain a condensate which behaves similarly

to an infinite, perfectly homogeneous system. To quantify this, we need to establish

a measure for that. Here we are aiming for a homogeneous areal density which is the

same as the infinite system would have close to collapse, as we only implement box

confinement in the radial direction and trapping along I is harmonic.

In a perfectly uniform cloud, each atom is surrounded by gas of the same local density.

As the distribution becomes more and more inhomogeneous, the areal density takes an

increasingly wider range of values across the cloud. A measure for homogeneity can be

established via the probability distribution of finding an atom between a certain areal

density =2D and =2D +Δ=, denoted by& (=2D,Δ=). We can find the corresponding (scaled)

probability density function % (=2D) of this distribution, where % (=2D) d=2D/=crit2D gives

the probability of finding a particle at a density between =2D and =2D + d=2D:

% (=2D) = =crit2D
d& (0, =2D)

d=2D

= =crit2D lim
Δ=2D→0

(
1

Δ=2D

∫
=2D<=2D (A )<=2D+Δ=2D

=2D(A )2cA dA∫ ∞
0
=2D(A )2cA dA

)
. (6.27)

The notation in this equation may look somewhat confusing—what we mean is that =2D
is the value around which we evaluate the function =2D(A ). The reason for introducing

the scaling of =crit2D is twofold: we are comparing =2D to =crit2D , so it is easier to look at the

ratio, and to make % (=2D) dimensionless.

A perfectly homogeneous cloud with areal density =crit2D has a probability density

distribution % (=2D) = X (=2D − =crit2D ), where X (G) is the Dirac delta function. However,

a non-homogeneous-like gas has a larger spread. To quantify how similar the gas is to

the infinite case, using the probability density function % (=2D) we calculate the fraction

of particles experiencing an areal density close to =crit2D , and we call this fraction � the
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‘homogeneity’ parameter. Choosing the ‘band-width’ around =crit2D is somewhat arbitrary,

and we found that calculating the fraction of atoms within 5% of =crit2D worked well. For a

perfectly homogeneous gas � = 1, but for a significantly inhomogeneous gas � < 1, as

not all the particles are at this density.

We should pay particular attention to the terminology here and emphasise that we

are not looking for the most homogeneous system with any dipolar interaction strength.

We are exploring how closely one can replicate an infinite homogeneous system at the

critical boundary for the roton instability in a confined system. While one cannot realise

infinitely large systems experimentally, recreating the same conditions in an extended but

finite region should still reproduce infinite homogeneous system phenomena. Although

a cloud with % (=2D) being a delta function not centred around =crit2D would be perfectly

homogeneous in the conventional sense of the word, it would not be like a homogeneous

system at the roton instability boundary, and is therefore of no interest to us. Therefore,

we only classify systems ‘homogeneous’ if a large proportion of their atoms are close to

=crit2D (one could call these homogeneous-like systems).

6.3 Numerical methods

In our simulations, for each trap with a given {W, ?} and for a given Ydd, we solve

the GPE and find the maximum value of � (6 is fixed by 6 = 4c�/3Ydd) for which a

stable ground state can be found. Solving Eq. (6.7) can usually not be done analytically.

Therefore, it is solved numerically, representing the wave function k̃ (r̃) on a discrete

and finite grid (§6.3.5). Direct computation is still numerically intensive and results are

sensitive to the strictness of the convergence criteria used. Therefore, we devise two

strategies to calculate the ground state (to countercheck results, see §§6.3.1 and 6.3.2) and

use a Fourier transform-based method to calculate the kinetic and dipolar terms (§6.3.3),

taking advantage of the cylindrical and axial symmetries of the system (see §6.3.4). The

computational implementation is described in §6.3.6.

6.3.1 Imaginary time propagation

There are many ways to solve the GPE, one of which is imaginary time propaga-

tion [283–285, 293, 294]. Consider a single-particle wave functionk (r, C),¹ written as a

¹ Beware thatk (r, C) is not the macroscopic wave function, but a general wave function which solves
the Schrödinger equation.
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superposition of energy eigenstatesk= (r) with energy �= ,

k (r, C) =
∑
=

k= (r)4−8�=C/ℏ . (6.28)

Performing a so-calledWick rotation, whereby we make the substitution C → −8g , we find

k (r,−8g) =
∑
=

k= (r)4−�=g/ℏ , (6.29)

where g is called ‘imaginary time’. In this representation, as imaginary time progresses,

eigenstates with higher energies decay faster than those with a lower energy, leaving

behind the ground state which is the lowest energy state by definition. Therefore, if we

make a guess of the ground state and propagate it in imaginary time, only the true ground

state will eventually remain (which we will need to renormalise as it also decays).

Remember that the time-dependent GPE can be written in terms of the single-particle

wave function in the Hartree–Fock approximation as

8ℏ
mk (r, C)
mC

= �̂k (r, C) , (6.30)

where �̂ is the GPE operator (cf. Eq. (6.1)). The solution is readily given by the propagator

*̂ (C) = 4−8�̂C/ℏ , (6.31)

such that

k (r, C) = *̂ (C)k (r, 0) , (6.32)

or, rewriting this using imaginary time,

k (r,−8 (g + Δg)) = *̂ (−8Δg)k (r,−8g) . (6.33)

Direct evaluation of the propagator is computationally costly due to the fact that �̂

consists of components that do not commute (namely )̂ = −ℏ2∇2/2<0 and +̂ = +trap(r) +
4cℏ20B# |k (r, C) |2/<0 + #

∫
+
*dd(r′ − r) |k (r′, C) |2 d3r′), so 4�̂ = 4)̂++̂ ≠ 4)̂4+̂ . While +̂ is

diagonal in the position basis, )̂ is diagonal in the momentum basis, so explicit evaluation

of )̂ in the position basis is difficult. Nevertheless, it can be shown that

*̂split(ΔC) = 4−
8+̂ΔC
2ℏ 4−

8)̂ΔC
ℏ 4−

8+̂ΔC
2ℏ (6.34)

approximates the propagator *̂ (ΔC) with an error that is only O
(
ΔC3

)
. The other advant-
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age of using this approximation is that the terms can be applied one by one and each can

be calculated efficiently in their own basis. (This is the so-called split-step method).

Therefore, the method for finding the ground state is as follows: propagate an ap-

proximate ground statek (r, 0) in small Δg imaginary time steps using *̂split (so that the

approximation holds with good precision), and renormalisek between each step. This

needs to be continued until convergence on the energy � [k ] is reached.

Deciding the convergence criteria is important, as too loose criteria can lead to

unstable states being flagged as stable ones, and too stringent criteria can lead to very

long computation times. We have already shown in §2.3.3 that l = 0 is always a solution

of the BdG equations ifk is the ground state.Therefore, the lowest< = 0 eigenvalue of the

BdG equations should be effectively 0 and the presence of such a neutral mode confirms

the ground state has been reached [282]. This is a strict and precise convergence criterion

to use, and this was our ultimate test to confirm the convergence of the ground state.

However, calculating the BdG eigenvalues is computationally costly, so we implemented

other, less stringent tests which need to be passed before the BdG test takes place. During

imaginary time propagation, assuming an exponential convergence of the energy of the

wave function, one can write the energy difference between the actual energy � (g) and
the converged energy �0 as

Δ� (g) = � (g) − �0 = �4−λg . (6.35)

How quickly the energy converges indicates how far we are from the ground state.

Between two imaginary time steps, the energy changes by X� = (d�/dg) Xg = −λΔ�Xg ,
so Δ� = −X�/Xgλ. We also have ln(−d�/dg) = ln(λ�) − λg , and given d�/dg ≈ X�/Xg ,
we find in successive time steps ln(−X�8/XC) − ln(−X�8+1/XC) = ln(X�8/X�8+1) = λXg .

Therefore, we find:

Δ� = − X�8+1

ln
(
X�8
X�8+1

) . (6.36)

Before doing the BdG test, we require this Δ� to be less than some energy threshold

�tol. Furthermore, we check that Δ�X� < 0, i.e. the algorithm is converging rather than

diverging. Making larger time steps Xg has the benefit of converging faster, but given the

split-step method yields an error in the energy of O
(
Xg3

)
, it comes at the expense of mak-

ing larger errors. Therefore, after an iteration set with a certain Xg converged, we decrease

our Xg by 3
√
2 (such that the error is halved) and continue with this procedure until the en-

ergy change between successive Xg iteration sets is also smaller than �tol (as the difference

between the converged results gives an indication of how far we are from the result with

Xg → 0). We then do the< = 0 BdG lowest eigenvalue test and lower �tol until it is passed.
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6.3.2 Preconditioned conjugate gradient method

As during code development finding stable convergence criteria for imaginary time

propagationwas difficult, another algorithmwas developed to independentlycheck results.

Imaginary time propagation can be thought of as minimising the energy associated with

k by changing it in small steps in a way that one goes down the gradient of the energy

landscape � [k ] with each step. However, when one tries to find the deepest point of a

valley, then instead of always just looking at their feet and taking a step in the steepest

direction, one could hold their head high and look towards a particular direction, then go

to the minimum along that direction, repeating this until one converges to the deepest

point. In this case, the difficulty lies in choosing the directions wisely.

The conjugate gradient method [286] is similar to imaginary time propagation (i.e.

steepest descent minimisation), only it does not necessarily follow the energy gradient at

each step. Instead, additional information is drawn from the Hamiltonian �̂ to construct a

set of directions that efficiently leads towards the minimum when applied consecutively.

Themethod was originally motivated by the problem of minimising a quadratic functional

and is laid out in detail in Refs. 287–289. It can be faster than imaginary time propagation,

and was used in Refs. 104, 266, 267 and 282.

Letk= be the wave function before the =ᵗʰ iteration.k1 is again a guess, and the first

step is taken along the direction of steepest descent. Afterwards, every iteration starts by

calculating the residual of the Hamiltonian eigenvalue problem,

|A=〉 = �̂ |k=〉 −
〈
�̂

〉
k= |k=〉, (6.37)

and the orthogonal projection (|?=−1〉) of the previous direction of descent (|3=−1〉) onto
the space generated by |k=−1〉,

|?=−1〉 = |3=−1〉 − 〈k=−1 | |3=−1〉|k=−1〉. (6.38)

After this, the new direction of descent is calculated according to

|3=〉 = −%̂ |A=〉 + V= |?=−1〉, (6.39)

where %̂ is called the preconditioner and V= is the step size that mixes in |?=−1〉, the
‘conjugate direction’. There are various ways of choosing V= , the most common of which
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is the Polak–Ribière formula [295]:

V= = max
(
0, VPR=

)
, (6.40)

VPR= =
(〈A= | − 〈A=−1 |)%̂ |A=〉〈

%̂
〉
A=−1

, (6.41)

which effectively restarts the conjugate gradient method whenever VPR= < 0. Finally, the

minimum of the energy along the new direction needs to be found. This can be done by

writing the new wave function as

|k=+1(\ )〉 = cos(\ ) |k=〉 +
sin(\ )
‖?=‖

|?=〉, (6.42)

which ensures the norm of the new wave function is equal to unity and that the direction

of descent is orthogonal to the current state. The energy is then minimised with respect

to \ , after which we can generate the wave function for the next step:

\= = argmin\ (� [k=+1(\ )]) , (6.43)

|k=+1〉 = |k=+1(\=)〉. (6.44)

These steps are repeated until the energy difference between the subsequent steps, X� =

� [k=+1] − � [k=], is small enough. We set this criterion to be X� < 10−12ℏlI , which we

found was enough to pass the< = 0 BdG test.

The algorithm works without using a preconditioner, i.e. choosing %̂ = �̂ (the identity

operator). However, using one speeds up the method considerably. One suggestion is

based on the kinetic energy operator [287–289], which is diagonal in momentum space:

%̂) =

(
U [k=] −

∇2

2

)−1
, (6.45)

where U is defined as

U [k=] =
〈
�̂

〉
k= . (6.46)

This preconditioner becomes inefficient for large spatial grid sizes and strong interactions

but was nevertheless used for finding the ground state of a dipolar gas in Refs. 266 and 282.

Therefore, Refs. 287–289 define a preconditioner based on the potential and interaction

terms, which are diagonal in position space:

%̂+ =

(
U [k=] ++trap + �̂int

)−1
. (6.47)
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The problem with %̂+ is that its performance deteriorates for high-resolution grids. How-

ever, this can be overcome by using it in combination with %̂) , which leads to three

possibilities,

%̂+) = %̂+ %̂) , (6.48)

%̂)+ = %̂) %̂+ (6.49)

and the symmetric version,

%̂( = %̂
1
2
+
%̂) %̂

1
2
+
. (6.50)

The last option should theoretically be a universally good choice, and it is the one we

used in our simulations.

6.3.3 Calculation of the dipolar and the kinetic terms

Calculating the dipolar and the kinetic terms in Eq. (6.6) is computationally costly

given the integration and differentiation involved. Using the convolution theorem, the

dipolar term can be rewritten in a more convenient form:

�

∫
+̃

*̃dd(r̃′ − r̃)
��k̃ (

r̃′, C̃
) ��2 d3r̃′ = �*̃dd ∗

��k̃ ��2 = �F −1
{
F

{
*̃dd

}
F

{��k̃ ��2}} , (6.51)

where F (F −1) denotes the (inverse) Fourier transform. Recall that the dipolar potential

in its dimensionless form is

*̃dd(r̃) =
1 − 3 cos2 \

|r̃|3
. (6.52)

The Fourier transform of this can be written analytically and takes the form [281]

F
{
*̃dd

} (
k̃
)
= 4c

(
cos2 \: −

1
3

)
, (6.53)

where cos\: = ẑ · k̃/
��k̃��.

This result allows for a faster calculation of the dipolar term, given the Fourier

transform of the dipolar potential only needs to be calculated once, and then calculating

the dipolar interaction term is a matter of calculating a Fourier and an inverse Fourier

transform, rather than evaluating an integral at every single point. However, it introduces

a new issue—as our functions are represented on a finite and discrete grid, we need to use

the discrete Fourier transform (DFT), which assumes the transformed function is periodic.

This means there would be a contribution from alias images of the cloud outside the grid

domain. To mitigate this, one can limit the range of the dipolar force by introducing a
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cutoff, and make sure that a sufficiently large grid is used in the simulation [266, 279, 284].

There are multiple ways to introduce this cutoff, one of which is the spherical cutoff [282]

*̃dd, S(r̃) =

1−3 cos2 \

|r̃|3 if |r̃| < '2
0 otherwise

, (6.54)

with its Fourier transform given by

F
{
*̃dd, S

} (
k̃
)
= 4c

(
cos2 \: −

1
3

) (
1 + 3

cos
(
'2:̃

)
'22 :̃

2
− 3

sin
(
'2:̃

)
'32 :̃

3

)
, (6.55)

where :̃ =
��k̃��. This is a simple option, but is inefficient in cases when the cloud has a large

aspect ratio, and so the cutoff sphere covers a lot of empty space—and consequentially

the grid would be unnecessarily large along I. A possible solution for this is using a

cylindrical cutoff instead,

*̃dd, C(r̃) =

1−3 cos2 \

|r̃|3 if Ã < Ã2 and Ĩ < /2

0 otherwise
, (6.56)

where r̃ = (Ã , Ĩ, iA ). The Fourier transform of this takes the form

F
{
*̃dd, C

} (
k̃
)
= 4c

(
cos2 \: −

1
3

)
+ 4c4−/2:̃A

(
sin2(\:) cos

(
/2:̃I

)
− sin(\:) cos(\:) sin

(
/2:̃I

) )
− 4c

∫ ∞

Ã2

∫ /2

0
cos

(
:̃IĨ

) Ã 2 − 2Ĩ2

(Ã 2 + Ĩ2)
5
2

�0

(
:̃A Ã

)
Ã dĨ dÃ , (6.57)

where k̃ =
(
:̃A , :̃I, i:

)
. This is a semi-analytic expression and requires a costly numerical

evaluation every time a grid is defined. Truncating the interaction in the radial direction

can be avoided in our case, as we use the (discrete) Hankel transform to calculate the

Fourier transform along A , which does not suffer from aliasing (see §6.3.4). Therefore, it is

sufficient to implement the cutoff only along I [282], given by

*̃dd, I (r̃) =

1−3 cos2 \

|r̃|3 if Ĩ < /2

0 otherwise
, (6.58)
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with its Fourier transform given by

F
{
*̃dd, I

} (
k̃
)
= 4c

(
cos2 \: −

1
3

)
+ 4c4−/2:̃A

(
sin2(\:) cos

(
/2:̃I

)
− sin(\:) cos(\:) sin

(
/2:̃I

) )
. (6.59)

The kinetic term, present in both the GPE and the BdG equations, can also be calculated

via a Fourier transform. Due to the cylindrical symmetry of our system, the projection

of the angular momentum along I is conserved and so all our excitations and wave

functions can be written in the form Ψ̃(r̃) = k̃ (Ã , Ĩ)4−8<iA , where< is an integer.² The

Fourier transform of such a function is F
{
Ψ̃
}
= F

{
k̃

}
8−<4−8<i: . Expanding the definition

of ∇̃2 and writing Ψ̃ as the inverse Fourier transform of F
{
Ψ̃
}
, one can show

∇̃2Ψ̃ = (−1)<+1F −1
{(
:̃2A + :̃2I

)
F

{
k̃

}}
. (6.60)

This is faster than forming ∇̃2 in the position basis, as it only requires a multiplication

and two Fourier transforms.

From here, the kinetic energy can also be easily calculated:∫
+̃

Ψ̃∗(r̃)
(
−∇̃

2

2

)
Ψ̃(r̃) d3r̃ = 1

(2c)2
∫ ∞

−∞

∫ ∞

0

:̃2A + :̃2I
2

���F {
k̃

}���2:̃A d:̃A d:̃I , (6.61)

which only requires a single Fourier transform and an integration in :-space. Interestingly,

this formula is independent of<. Furthermore, the kinetic part of our propagator (cf.

§6.3.1) can also be expressed as

4−
8)̂ΔC
ℏ k = 4

Δg̃
2 ∇̃2

k̃G
− 3

2
B = F −1

{
4
− Δg̃

2

(
:̃2A +:̃2I

)
F

{
k̃

}}
G
− 3

2
B . (6.62)

Calculating integrals and Fourier transforms on a grid is not trivial, and these discrete

transforms are presented in Appendix C.

6.3.4 Cylindrical and axial symmetry

As pointed out before, due to the cylindrical symmetry of our system imposed by the

shape of the trapping potential (Eq. (6.8)), the projection of the angular momentum along

I is conserved. This means all our excitations and wave functions can be written in the

² Note the change of notation: Ψ̃ is now the wave function, whereas k̃ is its component after the
(predetermined) angular dependence has been separated out. This is justified by the fact that it is
k̃ (Ã , Ĩ) that we need to find.
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form Ψ(r) = k (A, I)4−8<\ ,< ∈ Z. Ground states will have no angular momentum (as the

phase needs to be constant), so< = 0 andk (A, I, \ ) = k (A, I). In the case of excitations,

they might assume any integer<.

For such functions, we can reduce a 3D simulation to a 2D one, given the dependence

on \ is fixed. Furthermore, we expect ground states to be even around the I = 0 plane,

so we only need to calculate k (A, I) for I ≥ 0. Excitations should also have a definite

symmetry—they can be either even or odd along I, whichmeans we can constrain our sim-

ulations to I ≥ 0 in their case as well.These simplifications greatly speed up the simulation.

It is interesting to note that in our simulations, the lowest-lying odd excitation always has

an energy of exactly ℏlI , where the atoms slosh back and forth along I in unison, with

frequency lI . This is called the Kohn mode [296], and can be understood by realising that

if the interacting condensate is displaced without deformation, the interparticle interac-

tions are unchanged. Therefore, the system experiences a restoring force proportional to

the displacement (which is the same for all atoms), with a spring constant equal to that

of the bare trap. Therefore, the condensate will oscillate with this frequency and without

any distortion. This also means that it is always an even excitation that softens first.

For systems with such a symmetry, the Fourier transform of Ψ(r),

F {Ψ}(k) =
∫
+

Ψ(r)4−8k·r d3r , (6.63)

and its inverse,

Ψ(r) = F −1{F {Ψ}}(r) = 1
(2c)3

∫
+

F {Ψ}(k)48k·r d3k , (6.64)

can be expressed in terms of the so-called Hankel transform. The Hankel transform of

order< of a function 5 (A ) is defined as

H<{5 } =
∫ ∞

0
5 (A ) �< (:A ) A dA , (6.65)

with its inverse defined as

5 (A ) = H−1
< {H<{5 }} =

∫ ∞

0
H<{5 } �< (:A ) : d: , (6.66)

where �< is the Bessel function of the first kind of order<. Using the 1ˢᵗ Bessel integral,

�< (A ) =
∫ 2c

0
48 (A cos\+<\ ) d\/2c8< , expanding the definition of the Fourier transform and

doing the integral first with respect to \ , it can be shown that the Fourier transform of a
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2D function of form 5 (G,~) = 5 (A )4−8<\ can be written as

F
{
5 (A )4−8<\

}
= 2c8−<4−8<i H<{5 (A )} . (6.67)

Note the special case of< = 0, where the Hankel transform of 5 (A ) is equivalent to the

2D Fourier transform up to a factor of 2c . This means that the full 3D Fourier transform

of a function 5 (G,~, I) = 5 (A, I)4−8<\ can be written as

F3D

{
5 (A, I)4−8<\

}
= 2c8−<4−8<i FI{H<{5 (A, I)}} , (6.68)

where FI is the 1D Fourier transform along I and H< is the Hankel transform along A as

before.

Similarly, the inverse 2D Fourier transform of a function of the form 5̃ (:A )4−8<i can

be written as

F −1
{
5̃ (:A )4−8<i

}
=
8<

2c
4−8<\ H−1

<

{
5̃ (:A )

}
. (6.69)

Again, note the special case of< = 0, where the inverse Hankel transform of 5̃ (:A ) is
equivalent to the inverse 2D Fourier transform up to a factor of 2c .This means that the full

inverse 3D Fourier transform of a function 5̃ (:G , :~, :I) = 5̃ (:A , :I)4−8<i can be written as

F −1
3D

{
5̃ (:A , :I)4−8<i

}
=
8<

2c
4−8<\ F −1

I

{
H−1
<

{
5̃ (:A , :I)

}}
, (6.70)

where F −1
I is the inverse 1D Fourier transform along I and H−1

< is the inverse Hankel

transform along A as before.

Rewriting the Fourier transform this way is useful, as when a function is represented

on a discrete and finite grid, the discrete Fourier transform (DFT) assumes the function

is periodic outside this domain (see Appendix C.1), but the discrete Hankel transform

(DHT) does not (see Appendix C.4). As we saw before, a periodic extension is undesirable

given that would yield an interaction between alias copies of our gas, so the usage of the

Hankel transform is preferable.

Regarding parity along I, the Fourier series of an even function should only have

cosine terms, while an odd function should only have sine terms.Therefore, to calculate the

Fourier transform, we can use the discrete cosine transform (DCT) for even functions (see

Appendix C.2) and the discrete sine transform (DST) for odd functions (see Appendix C.3),

instead of the more computationally costly full discrete Fourier transform (DFT). More

details about the discrete transforms are given in Appendix C.
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6.3.5 Spatial discretisation

Thewave functionk (A, I) is represented on a grid of size #A ×#I , spanning the region

[0, !A ] × [−!I/2, 0] (i.e. representing the wave function on [0, !A ] × [−!I/2, !I/2]). Grid

points are evenly distributed along I, but not along A . In the radial direction, grid points

are placed at the zeros of the first order Bessel function of the first kind, to facilitate the

efficient calculation of the Hankel transform (see Appendix C.4). The grid spacing along

A is only significantly non-uniform for a few points closest to the origin, and the outer

portion of the grid is approximately evenly distributed. Appendix C provides further

details about the grid geometry and describes an accurate interpolation formula and

methods for evaluating integrals with high precision. In our simulations, we used 256× 65

points. The grid needs to be large enough to comfortably contain the gas, whose size can

be estimated using the Thomas–Fermi approximation (Eq. (6.20)). Along A we used a grid

size of 1.2'A ('A is the Thomas–Fermi radius), along I we used a grid size of 10ℓI , which

is large enough to avoid interaction between phantom copies of the gas. We can use a

constant grid size along I as 'I depends only weakly on a (and hence Ydd). The chosen

number of points ensured adequate sampling of the shortest relevant length scales (the

oscillator length ℓI along I and the roton wavelength λrot ≈ 2cℓI along A ). We checked

that our results were insensitive to the exact number of grid points.

6.3.6 Computing implementation

The program is implemented in the Python language [290]. As Python is known to be

fairly slow, the program takes advantage of various efficient, parallel-computing methods

written in C and Fortran under the hood. The Fourier transform is calculated by taking

the discrete cosine/sine transform (DCT/DST) along I (based on whether the function

is even/odd along I) and the discrete Hankel transform (DHT) along A . The DHT was

implemented using the recipes from Refs. 297 and 298, using the numpy package [299]

compiled against the mkl library to provide highly efficient linear algebra (BLAS) op-

erations (e.g. matrix multiplication). The DCT and DST are implemented using the fast

Fourier transform (FFT) via the mkl_fft package, which provides a Python interface to

mkl. We chose mkl_fft as it seemed faster than both numpy and fftw [300]. Some other

parallel vector and matrix operations were implemented using the numba package [301],

and the whole execution is parallelised using the concurrent.futures Python module.

The BdG eigenvalue problem is solved by using arpack [302] via the scipy package [259].

As the eigenvalues of the BdG equations are real for a stable condensate, to find the energy

of the lowest-lying excitation it is sufficient to use the ‘SR’ (smallest real part) mode of
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arpack, without a preconditioner, which avoids calculating the inverse of the BdG matrix.

We also tried implementing various parts on a GPU using the pytorch [303] and jax [304]

packages, but they did not achieve a considerable speed gain, presumably because we use

rather small arrays to represent our wave functions which all fit into the cache of our CPUs.

In terms of strategy, we search for the stability boundary by varying � for a given ? ,

W and Ydd. Using the Thomas–Fermi approximation, we can calculate aTF. We know the

stability boundary should be reached when aTF ≈ acrit, as given by Ref. 273, so we employ

a binary search technique to find the critical � , the strongest dipolar interaction strength

where a stable condensate can be found.

6.4 Results

The goal of the simulations is to design a trap in which the distribution of the atoms

resembles that of an infinite homogeneous system (trapped along I but unconfined along

A ) as close as possible, at the roton instability boundary. More generally, we would like

to get a better understanding of the effect of trap geometry on the homogeneity and

stability of the ground state of our dipolar BEC. We look at the case of spin-polarised,

strongly dipolar condensates (i.e. Ydd � 1), and we consider trapping in a power-law

potential (cf. Eq. (6.8)). To illustrate general trends, three representative values of the box

exponent, ? = 2, 6 and 20 are used in the initial analysis, for a purely dipolar gas (i.e.

6 = 0) with W = 40, representing harmonic trapping and box potentials with a moderate

(soft-wall) and high steepness (hard-wall), respectively. The case of harmonic trapping is

already well explored [266, 282]—indeed, we checked our results against these sources

and found perfect agreement –, and our goal is to extend this analysis to higher values of

? to explore a box potential-like configuration.

For each ? , we investigate the stability boundary by increasing the strength of the

interactions � and 6 (such that Ydd is fixed) until the condensate collapses. The program

uses the imaginary time propagation method to find the ground state, taking advantage

of the cylindrical symmetry of the system. Results were counter-checked using the

preconditioned conjugate gradient method [104]. Given the cylindrical setup, the ground

states need to be checked for angular excitations using the BdG approach. To achieve

numerical stability, a smaller initial timestep (Δg̃ ≈ 10−5) was used for large exponents

(? ¦ 10), but a larger initial timestep (Δg̃ ≈ 10−3) was sufficient for small exponents

(? ® 5). Conversely, tighter convergence (�̃tol ≈ 10−6) was needed for small exponents,

compared to �̃tol ≈ 10−3 for large exponents. It is worth mentioning that convergence for

high aspect ratios (W ¦ 40) could be achieved with larger �̃tol as well.
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The data obtained reveal interesting trends that influence our trap design. Very large

aspect ratios and power laws converge to the infinite homogeneous case on the stability

boundary, but in the experimentally accessible region a hard wall induces large density

oscillations in the cloud which makes it both less stable and less homogeneous. A less

steep wall seems to be better suited to achieve a homogeneous condensate, compared to

either a harmonic trap or a box trap with hard walls.

In §6.4.1 we illustrate general trends in stability and homogeneity, and in §6.4.2 we

present universal behaviour.

6.4.1 Homogeneity and stability against collapse

Given the anisotropic nature of the dipolar interaction, it is inevitably attractive for

some of the atoms. Therefore, a cloud of dipolar atoms trapped in any trap will eventually

become unstable as the interaction strength is increased. In each run of the simulation, we

fix ? , W and Ydd, and find the ground state of a non-interacting gas (� = 6 = 0). We then

continue by increasing the dipolar interaction strengths � and 6 (such that Ydd is fixed)

until instability is reached. Practically, as we know the stability boundary for an infinite

system is given by acrit (cf. Eq. (6.23)), we do the search for the critical interaction strength

�crit in terms of aTF, as defined by Eq. (6.24). To set the grid size, we use Eq. (6.25).

In this subsection, we limit ourselves to exploring purely dipolar gases, but more

general, universal behaviour will be presented in the next section. As we are interested

in reproducing an infinite, fully homogeneous system, we present our analysis in terms

of =crit2D , the critical density an infinite system would have (cf. Eq. (6.23)).

The critical density distributions for the different trap geometries, along with the

corresponding probability density distributions (as defined in §6.2.4) are shown in Fig. 6.2.

Results for ? = 2 (Fig. 6.2(a)) match the data of existing publications on stability in

harmonic traps [266, 282], but our simulations go up to larger aspect ratios.

Figures 6.2(a)–6.2(c) show examples of =2D(A )/=crit2D for a purely dipolar gas (6 = 0)

with three different ?’s for W = 40. In all cases, the gas becomes unstable when =2D(A )
reaches =crit2D (or just above) somewhere in the trap, suggesting the local onset of the

homogeneous roton instability (in a local density approximation picture). While for

? = 2 and ? = 20 the critical density is only reached at the trap centre and the trap

edge respectively, for ? = 6 it is reached across most of the gas simultaneously. To

further highlight this, in Figs. 6.2(d)–6.2(f) we plot the corresponding probability density

distributions % (=2D), where % (=2D) d=2D/=crit2D gives the probability of finding a particle

at a density between =2D and =2D + d=2D (cf. §6.2.4). For a perfectly homogeneous system

% (=2D) would be a delta function. For ? = 2 we see that % (=2D) varies smoothly and only
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Figure 6.2. Critical density distributions of a purely dipolar gas. (a)–(c) Areal density
distributions =2D (solid blue lines) at the highest interaction strength at which
a stable ground state can form in a power-law potential with W = 40 and
? = 2, 6 and 20, respectively (dashed grey lines). The =2D’s are given relative to
=crit2D , the critical density for the roton instability in an infinite flattened system;
the trap potential is given relative to the chemical potential and shares the
same axis. It can be seen that instability in the trapped system occurs when
the maximum =2D is close to =crit2D . For ? = 20, this is due to a pronounced
density oscillation near the trap wall, whose wavelength is close to λrot (see
arrow). (d)–(f) Corresponding probability density distributions % (=2D) of the
areal density (see text). % (=2D) is plotted on the horizontal axis such that the
vertical axis is shared with plots (a)–(c), the grey shading denotes the region
within 5% of =crit2D . Whereas for the ? = 6 trap 63% of the atoms are within 5%
of =crit2D , for both high and low ? only a small fraction is. Adapted from Ref. 46.
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a small fraction of the particles are near =crit2D . The distribution for ? = 20 is very different,

with a large peak corresponding to the bulk of the system at =2D/=crit2D ≈ 0.6, but still

with only a small fraction near =crit2D . For ? = 6, the peak corresponding to the bulk of

the system sits at =crit2D and so the majority of the system approaches the roton instability

simultaneously.

This is one of the main findings of our simulations, as this implies that to achieve the

most homogeneous-like condensate (as measured by � ) in an experimentally accessible

region, it is better to implement a box with soft walls (moderate ?) rather than one with

perfectly rigid walls (large ?). A gas with repulsive contact interactions, trapped in an

optical box trap, reaches maximum uniformity for large values of the box exponent ? ,

but for a dipolar gas the situation is different. The anisotropic nature of the DDI leads

to the depletion of the atomic density in the middle and the accumulation of material

towards the walls in the case of strong interactions at experimentally accessible aspect

ratios. For larger aspect ratios, we recover the homogeneous case of Ref. 273, where the

DDI has the same effect as contact interactions as far as stability is concerned, so a high

? in that case is more favourable (see next section).

We can also examine the shape and spectrum of excitations. The effect of angular

excitations is understandably more significant for biconcave clouds (when the maximum

density is located away from the trap centre, along a rim), and less significant for convex

clouds, so we will focus on the case of ? = 20 to illustrate this effect.

The shape of the excitations can be visualised. Using Eq. (6.11), we can see that up to

first order in the (small) excitation Xk , the 3D density can be written as

=(r, C) = |k (r, C) |2 = k 2
0 (r) +k0(r) (Xk (r, C) + Xk ∗(r, C)) , (6.71)

givenk0(r) can be chosen real. With the appropriate choice of C = 0, the components D

and E of an excitation (cf. Eq. (6.12)) can be written as

D (r) = D (A, I)4−8<iA , E (r) = E (A, I)4−8<iA , (6.72)

where< is the angular order of the excitation. Therefore, we find

=(A, I, iA , C) = k 2
0 (A, I) + 2k0(A, I) (D (A, I) + E (A, I)) cos(lC +<iA ) . (6.73)

To find the 2D-density, we can take the integral along I as usual.

The shape and energy spectrum of the angular excitations for ? = 20, W = 40 (i.e. the

same condensate that was presented in Fig. 6.2(c)) are presented in Fig. 6.3. The areal

density of the excited state (Fig. 6.3(a)) oscillates between the two extrema according to
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Figure 6.3. Shape and spectrum of excitations. (a) Areal density of the ground state (solid
line) and the lowest energy excited state (dashed line) of the same condensate
as presented in Fig. 6.2(c) (? = 20, W = 40). The condensate oscillates between
the two extrema according to cos(lC +<iA ). The order of the lowest excitation
is< = 34, so there are 68 (!) nodes around the rim. The excitation amplitude
should be small compared to the ground state density, but here it is chosen
relatively large for better visibility. (b) Excitation energy spectrum of this
system as a function of the order of the excitation<, for a variety of interaction
strengths (darker colour indicates stronger excitation). A roton–maxon-like
spectrum can be seen with a pronounced dip at< = 34, where the excitation
energy is almost 0 (i.e. the condensate is almost unstable). As the order<
(and hence the momentum) of the excitation is increased further, the energy
increases again. Furthermore, as the interactions get weaker, the dip in the
excitation spectrum becomes smaller, signifying a more stable condensate.
(c) 2D visualisation of the ground state areal density (the solid line in (a)).
(d) 2D visualisation of the lowest-energy excitation (the dashed line in (a)),
displaying the 68 nodes around the rim. We see the density of the condensate
is only changed around the rim, and the excitation periodically increases (red)
and decreases (blue) it.
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cos(lC +<iA ), where the order of the lowest energy mode is< = 34 (!). It can be seen

that the excitation is concentrated on the density oscillation around the rim, i.e. it tries

to make it so dense that the condensate collapses. To make this more easily visible, we

show the distribution of the areal density of the ground state of the condensate and the

excitation in 2D in Figs. 6.3(c) and 6.3(d).

The excitation energy spectrum (Fig. 6.3(b)) also reveals some interesting trends.

When the excitation energy is plotted as a function of the order of the excitation<, a

roton–maxon-like excitation spectrum can be seen with a pronounced dip at< = 34,

where the excitation energy is almost 0 (i.e. the condensate is almost unstable). As the

order< (and hence the momentum) of the excitation is increased further, the energy

increases again. Furthermore, if aTF is decreased, the roton dip becomes less pronounced

and so the condensate becomes more stable as expected.

6.4.2 Universal behaviour

To better quantify the power-law best suited for studying the physics of an infinite

homogeneous system in the roton regime, we define a ‘homogeneity’ parameter � as

the fraction of particles that experience an =2D within 5% of =crit2D . We note this parameter

quantifies how close the system is to a perfectly homogeneous system at the roton
instability, and not (only) how uniform the density is across the sample. In Fig. 6.4(a), we

plot � against the exponent ? for aspect ratios W = 30, 50 and 70 for a purely dipolar gas

(6 = 0, solid lines). For all three aspect ratios, � gradually increases with ? up to some

optimum ?∗ before dropping sharply with higher ? as the peak in % (=2D) moves below

0.95=crit2D . We see that ?∗ increases with W ; it is determined by the ? at which significant

density starts accumulating near the edge of the trap (cf. Fig. 6.2(c)). We have also checked

that this behaviour is not specific to purely dipolar gases but also applies in the presence

of (weak) contact interactions. We show the curves for Ydd = 3 (dashed lines), and see that

repulsive contact interactions increase both ?∗ and the maximum � slightly (attractive

contact interactions have the opposite effect).

One would expect density oscillations near the wall to somehow be controlled by

the trap wall steepness, which not only depends on ? but also on W . We define the wall

steepness as the gradient of the trap potential (relative to the chemical potential ˜̀2 ) at

half the chemical potential,

( =
d
(
+̃trap/ ˜̀2

)
dÃ

�����
+̃trap (Ã ,0)= ˜̀2/2

=
?

2W
˜̀−1/?2 . (6.74)
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Figure 6.4. Optimum power-law. (a) The ‘homogeneity’ � (see text) as a function of
the power-law exponent ? for trapping potential aspect ratio W = 30 (red,
lower lines), 50 (green, middle lines) and 70 (blue, upper lines). The curves
are plotted for a purely dipolar gas (solid lines) and for a gas with Ydd = 3
(dashed lines). The optimum ? (= ?∗) increases with W . (b) The same data
plotted against the trap wall steepness ( (see text). The optimum � occurs at
the same ( ≈ 0.1(= (∗) for all W . (c) The optimum power-law ?∗ (dots) and the
prediction ?∗pred using (∗ = 0.1 (lines) as a function of W for a purely dipolar
gas (filled dots, dashed line) and for one with Ydd = 3 (empty dots, dotted
line). (d) The maximum � (= �max), achievable for a given W (filled dots for a
purely dipolar gas, empty dots for Ydd = 3). The dashed line provides a simple
interpretation of how �max depends on W (see text). Adapted from Ref. 46.
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In Fig. 6.4(b), we plot � for the same aspect ratios as in Fig. 6.4(a) but now against ( .

Plotting this way reveals that the maximum � occurs at the same ( = (∗ ≈ 0.1 for all

three aspect ratios for a dipolar condensate with or without contact interactions. Given

{?,W, ˜̀2} uniquely defines ( , we can invert Eq. (6.74) and use (∗ to predict

?∗pred =
ln ˜̀2

,0

(
ln ˜̀2
2(∗W

) , (6.75)

where,0(G) is the Lambert, function. To check this, in Fig. 6.4(c) we plot ?∗ and ?∗pred
for a range of W and see there is very good agreement. This behaviour is in contrast to a

gas with only contact interactions (Ydd = 0), where homogeneity would monotonically

increase with ( , but would saturate when X = ℓI/( (the trap ‘wall thickness’) reaches the

healing length b = ℓI/
√
2 ˜̀2 [47] (for our parameters b ≈ 0.5ℓI � λrot). In our case, we

reach the optimum � at X ≈ 10ℓI � b , which is close to the roton wavelength λrot ≈ 2cℓI .

As shown in Fig. 6.4(d), as W increases, the maximum � (�max, achieved at the also

growing ?∗) increases towards 1, suggesting that the homogeneous limit can still in

principle be approached if W and ? are increased together in a suitable way. The trend

can be understood via a simple model (dashed line). If we assume the cloud consists of a

homogeneous centre with radius WℓI − λrot and an inhomogeneous boundary with width

λrot, we can estimate

�max ≈
(WℓI − λrot)2c

(WℓI)2c
=

(
1 − λrot

WℓI

)2
. (6.76)

6.4.3 Experimental considerations

Finally, we consider the implications of our results for experimentally realising a close-

to-homogeneous dipolar gas in the roton regime. Unlike for gases with solely repulsive

contact interactions, the need for relatively soft walls means that the optics for creating

an appropriate trap is unlikely to be a significant constraint. Instead, the limiting factor

is likely to be the number of atoms required to fill a high-W trap. For an approximately

uniform gas in the roton regime =2D ≈ 1/cW2ℓ2I ≈ =crit2D , which using Eq. (6.23) gives

W2 = 4#0eff/acrit(Ydd)ℓI . This shows that filling a large-W trap requires ℓI to be small, but

ℓI needs to be kept large enough to avoid high (3D) number densities which result in

excessive three-body losses. The (dimensionful) peak density can be approximated via

the Thomas–Fermi approximation. From Eq. (6.18) we see that the peak density will occur

at+trap = 0 at which point =max
3D ≈ #`2/6eff = ˜̀ℎ (Ydd)ℏlI# /6eff = ˜̀ℎ (Ydd)/4c0effℓ2I , where

˜̀ℎ (Ydd) is the (dimensionless) chemical potential tabulated in Ref. 273. Solving for ℓI and
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inserting it into our expression for W2 gives

W2max ≈
8
√
c

acrit
√
˜̀ℎ
#

√
=max
3D 03eff . (6.77)

Therefore, with 105 erbium or dysprosium atoms (for which 0dd ≈ 10000, and setting

0B ≈ 0), if we limit=3D ® 100 µm−3, one could reachWmax ≈ 40with ℓI ≈ 0.4 µm (equivalent

to a vertical trapping frequency of approximately 400Hz), resulting in� ≈ 70% for ?∗ = 8

(cf. � ≈ 10% in a harmonic trap).
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Homogeneous quantum gases open up new possibilities for studying many-body phenomena and have now
been realized for a variety of systems. For gases with short-range interactions the way to make the cloud
homogeneous is, predictably, to trap it in an ideal (homogeneous) box potential. We show that creating a close to
homogeneous dipolar gas in the roton regime, when long-range interactions are important, actually requires
trapping particles in soft-walled (inhomogeneous) box-like potentials. In particular, we numerically explore
a dipolar gas confined in a pancake trap which is harmonic along the polarization axis and a cylindrically
symmetric power-law potential rp radially. We find that intermediate p’s maximize the proportion of the sample
that can be brought close to the critical density required to reach the roton regime, whereas higher p’s trigger
density oscillations near the wall even when the bulk of the system is not in the roton regime. We characterize
how the optimum density distribution depends on the shape of the trapping potential and find it is controlled by
the trap wall steepness.

DOI: 10.1103/PhysRevA.105.L061301

The behavior of many-body quantum systems is gov-
erned by the interplay of the potential confining the particles
and the interactions between them; ultracold gases allow
for the fine control of both of these aspects. While in
most ultracold-atom experiments interparticle interactions are
short-ranged and isotropic, the realization of ultracold dipolar
gases, using highly magnetic atoms [1–4], molecules [5], and
Rydberg atoms [6], has introduced anisotropic, long-range
dipole–dipole interactions, opening up many new avenues for
research. In the case of degenerate Bose gases, the presence of
dipole–dipole interactions has, for example, led to the study of
roton physics [7,8] and the related discovery of a supersolid
phase [9–11].

The term ‘roton’ was first coined in the context of liquid
helium [12], where it describes excitations observed around a
minimum in the excitation spectrum at nonzero momentum.
Ultracold dipolar gases tightly confined along the polarization
direction of the dipoles and held more loosely in (at least one
of) the other two directions display a similar roton dispersion
relation. In this case, the origin of the roton feature is the
interplay of the anisotropic, long-range interactions and the
tight confinement. As the strength of the interactions is in-
creased, the roton minimum forms, deepens, and then reaches
zero energy, causing the roton instability. In certain cases, this
leads to the formation of quantum droplets [13–15] and, very
close to the instability, a supersolid phase [9–11,16].

In the experiments so far, the dipolar gases were con-
fined in anisotropic, harmonic potentials; theoretically, most
attention has focused on such fully harmonically trapped
gases [17–33] and on homogeneous condensates [34–40]

*The authors contributed equally to this work.
†robert.smith@physics.ox.ac.uk

which are harmonically confined along the polarization di-
rection but are unconfined in at least one of the other two
(in-plane) directions. The natural way to create homogeneous
conditions experimentally is to make the in-plane confine-
ment box-like. Box traps had much success in systems with
purely contact interactions [41], as making a condensate
homogeneous almost invariably makes the interpretation of
experiments easier and the comparisons with theory more
direct. Such traps are yet to be used for experimentally study-
ing many-body phenomena in dipolar quantum gases, but
theoretical studies involving ideal box traps have revealed
nontrivial effects such as the accumulation of density near the
box walls [42] and novel supersolid crystal structures [43].

In this Letter, we numerically explore the homogeneity
of a dipolar gas, tuned close to the roton instability, in a
flattened, cylindrically symmetric (‘pancake’) potential, with
tight harmonic confinement along z (the direction of polar-
ization of the dipoles) and a power-law potential rp in the
perpendicular plane (see Fig. 1). This choice is motivated by

FIG. 1. Trap geometry. We consider a gas of dipoles aligned
along z which interact via dipole–dipole and contact interactions, and
are confined in a ‘pancake’ trap by a harmonic potential along the
axis (z2) and a cylindrically symmetric power-law potential in the
radial direction (rp).
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the fact that a general power-law potential smoothly interpo-
lates between a harmonic potential (p = 2) and an ideal box
potential (p → ∞), and that experimentally relevant box-like
traps are typically characterized as power-law potentials [44].
Additionally, Laguerre–Gaussian beams, often used to create
optical box traps, can be used to controllably realize power-
law potentials. We should emphasize that we are not looking
for the most homogeneous system with any dipolar interaction
strength, but we are exploring how closely one can replicate
an infinite homogeneous system at the critical boundary for
the roton instability. While one cannot realize infinitely large
systems experimentally, recreating the same conditions in an
extended but finite region should still reproduce infinite homo-
geneous system phenomena. We find that achieving the most
homogeneous conditions within the roton regime requires an
intermediate p which depends on the trap aspect ratio—this
is in sharp contrast to systems with only contact interactions,
where a higher p always leads to more homogeneous conden-
sates [41]. We show that the optimum p for a given aspect ratio
is determined by the box walls being soft enough so as not to
trigger a roton-like instability at the edge significantly before
it occurs in the bulk. We also examine how the optimum p
depends on the aspect ratio and how homogeneous-system-
like a sample could be produced within realistic experimental
limitations.

We consider a bosonic gas of N atoms, each with mass
m and magnetic dipole moment μm, confined in a pancake
trap (see Fig. 1), and we work in dimensionless units where
times are expressed in units of the inverse z-axis oscillator fre-
quency 1/ωz, energies in units of h̄ωz, and lengths in units of
the harmonic oscillator length �z = √

h̄/(mωz ). The trapping
potential we are considering is given by

Vtrap(r, z) = 1

2

((
r

γ

)p

+ z2

)
, (1)

where γ characterizes the aspect ratio of the trap.
At zero temperature, our dipolar gas is expected to form

a Bose–Einstein condensate (BEC) described by the macro-
scopic wave function �(r, t ) = √

Nψ (r, t ), where ψ (r, t ) is
the normalized single-particle wave function that obeys the
(dimensionless) Gross–Pitaevskii equation (GPE):

i
∂ψ (r, t )

∂t
=

(
−1

2
∇2 + Vtrap(r) + gs|ψ (r, t )|2

+ D�dd(r, t )

)
ψ (r, t ). (2)

Here, the strength of contact interactions is characterized
by the parameter gs = 4πasN/�z, where as is the s-wave
scattering length and the strength of dipolar interactions is
characterized by the parameter D = 3addN/�z, where add =
mμ0μ

2
m/(12π h̄2) is the dipolar length and μ0 is the per-

meability of free space. The form of the mean-field dipolar
interaction potential is given by

�dd(r, t ) =
∫

1 − 3 cos2 θ

|r − r′|3 |ψ (r′, t )|2 d3r′, (3)

where θ is the angle between z and r − r′. The relative
strength of these interactions (compared to the contact inter-
actions) is given by the ratio εdd = add/as. Note that here we

neglect quantum fluctuations, as their contribution is negligi-
ble up to the typical densities required for mean-field collapse;
they only become significant at higher densities when they can
arrest the collapse, leading to quantum droplets or supersolid-
ity [14].

In the absence of an in-plane potential (i.e. p → ∞ and
γ → ∞), a dipolar gas is predicted to develop a roton-like
excitation spectrum, with a roton minimum for excitations
of wavelength λrot ≈ 2π [7], which deepens with increas-
ing dipolar interaction strength and reaches zero energy
at the roton instability. The instability occurs when the
single-particle areal density n2D(r) = ∫ ∞

−∞ |ψ (r)|2 dz reaches
a critical value [7,34] given by

ncrit
2D (εdd) = 3νcrit(εdd)

4πD
(
ε−1

dd + 2
) , (4)

where the value of the dimensionless prefactor νcrit(εdd) is
tabulated in Ref. [34]. Interestingly, up until the gas be-
comes unstable, the density distribution of the BEC has
the same form as a gas with only contact interactions with
an effective scattering length aeff = as + 2add = add(ε−1

dd +
2) [34], or equivalently an effective interaction parameter
geff = 4πaeffN/�z.

In our simulations, for each trap with given {γ , p} and for
a given εdd, we solve the GPE and find the maximum value of
D (gs is fixed by gs = 4πD/(3εdd)) for which a stable ground
state can be found (see the Appendix for further information
about our algorithm). As we aim to compare the resulting
critical density distributions to the infinite (perfectly homo-
geneous) flattened system, we evaluate the r-dependent areal
density n2D(r) and compare it to ncrit

2D , the density a perfectly
homogeneous system would have at the roton instability.

Figures 2(a)–2(c) show examples of n2D(r)/ncrit
2D for a

purely dipolar gas (εdd → ∞) with three different p’s for
γ = 40. In all cases, the gas becomes unstable when n2D(r)
reaches ncrit

2D (or just above) somewhere in the trap, suggesting
the local onset of the homogeneous roton instability (in a
local density approximation picture). While for p = 2 and
p = 20 the critical density is only reached at the trap cen-
ter and the trap edge respectively, for p = 6 it is reached
across most of the gas simultaneously. To further highlight
this, in Figs. 2(d)–2(f) we plot the corresponding probability
density distributions P(n2D), where P(n2D) dn2D/ncrit

2D gives
the probability of finding a particle at a density between n2D

and n2D + dn2D. For a perfectly homogeneous system P(n2D)
would be a delta function. For p = 2 we see that P(n2D)
varies smoothly and only a small fraction of the particles
are near ncrit

2D . The distribution for p = 20 is very different,
with a large peak corresponding to the bulk of the system at
n2D/ncrit

2D ≈ 0.6, but still with only a small fraction near ncrit
2D .

For p = 6, the peak corresponding to the bulk of the system
sits at ncrit

2D and so the majority of the system approaches the
roton instability simultaneously.

We note that the increase of density seen near the trap walls
in high-p traps (cf. Fig. 2(c)) is a consequence of the repulsive
(and long-range) nature of the interaction between side-by-
side dipoles and can be understood in the Thomas–Fermi
approximation, in which Vext(r) + gs|ψ (r)|2 + D�dd(r) must
be constant and equal to the chemical potential within the
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FIG. 2. Critical density distributions of a purely dipolar gas. (a)–
(c) Areal density distributions n2D (solid blue lines) at the highest
interaction strength at which a stable ground state can form in a
power-law potential with γ = 40 and p = 2, 6, and 20, respectively
(dashed gray lines). The n2D’s are given relative to ncrit

2D , the critical
density for the roton instability in an infinite flattened system; the
trap potential is given relative to the chemical potential and shares the
same axis. It can be seen that instability in the trapped system occurs
when the maximum n2D is close to ncrit

2D . For p = 20, this is due to a
pronounced density oscillation near the trap wall, whose wavelength
is close to λrot (see arrow). (d)–(f) Corresponding probability density
distributions P(n2D) of the areal density (see text). P(n2D) is plotted
on the horizontal axis such that the vertical axis is shared with
plots (a)–(c), the gray shading denotes the region within 5 % of ncrit

2D .
Whereas for the p = 6 trap 63 % of the atoms are within 5 % of ncrit

2D ,
for both high and low p only a small fraction is.

cloud. In a sharp-walled trap, the contribution of the external
potential is negligible. However, due to the long-range nature
of the dipolar interactions, if the gas had a homogeneous
density distribution, the dipolar term would be significantly
reduced near the wall, so the density needs to increase to com-
pensate. For less steep traps, the increasing Vext compensates
the decay of �dd and so no density accumulation occurs near
the edge of the trap.

To better quantify the power-law best suited for studying
the physics of a homogeneous system in the roton regime,
we define a ‘homogeneity’ parameter H as the fraction of
particles that experience an n2D within 5 % of ncrit

2D . We note
this parameter quantifies how close the system is to a perfectly
homogeneous system at the roton instability, and not (only)
how uniform the density is across the sample. In Fig. 3(a), we
plot H against the exponent p for aspect ratios γ = 30, 50,
and 70 for a purely dipolar gas (εdd → ∞, solid lines). For all
three aspect ratios, H gradually increases with p up to some
optimum p∗ before dropping sharply with higher p as the peak
in P(n2D) moves below 0.95 ncrit

2D . We see that p∗ increases
with γ ; it is determined by the p at which significant density
starts accumulating near the edge of the trap (cf. Fig. 2(c)). We

FIG. 3. Optimum power-law. (a) The ‘homogeneity’ H (see text)
as a function of the power-law exponent p for trapping potential
aspect ratio γ = 30 (red, lower lines), 50 (green, middle lines), and
70 (blue, upper lines). The curves are plotted for a purely dipolar gas
(solid lines) and for a gas with εdd = 3 (dashed lines). The optimum
p(= p∗) increases with γ . (b) The same data plotted against the
trap wall steepness S (see text). The optimum H occurs at the same
S ≈ 0.1(= S∗) for all γ . (c) The optimum power-law p∗ (dots) and
the prediction p∗

pred using S∗ = 0.1 (lines) as a function of γ for a
purely dipolar gas (filled dots, dashed line) and for one with εdd = 3
(empty dots, dotted line). (d) The maximum H (= Hmax), achievable
for a given γ (filled dots for a purely dipolar gas, empty dots for
εdd = 3). The dashed line provides a simple interpretation of how
Hmax depends on γ (see text).

have also checked that this behavior is not specific to purely
dipolar gases but also applies in the presence of (weak) contact
interactions. We show the curves for εdd = 3 (dashed lines),
and see that repulsive contact interactions increase both p∗
and the maximum H slightly (attractive contact interactions
have the opposite effect).

One would expect density oscillations near the wall to
somehow be controlled by the trap ‘wall’ steepness, which
not only depends on p but also on γ . We define the steepness
as the gradient of the trap potential (relative to the chemical
potential μ) at half the chemical potential:

S = d (Vtrap/μ)

dr

∣∣∣
Vtrap (r,0)=μ/2

= p

2γ
μ−1/p. (5)

In Fig. 3(b), we plot H for the same aspect ratios as in Fig. 3(a)
but now against S. Plotting this way reveals that the maximum
H occurs at the same S = S∗ ≈ 0.1 for all three aspect ratios
for a dipolar condensate with or without contact interactions.
Given {p, γ , μ} uniquely defines S, we can invert Eq. (5) and
use S∗ to predict

p∗
pred = ln μ

W0
( ln μ

2S∗γ

) , (6)

where W0(x) is the Lambert W function. To check this, in
Fig. 3(c) we plot p∗ and p∗

pred for a range of γ and see
there is very good agreement. This behavior is in contrast
to a gas with only contact interactions (εdd = 0), where
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homogeneity would monotonically increase with S, but would
saturate when δ = 1/S (the trap ‘wall thickness’) reaches the
healing length ξ = 1/

√
2μ (for our parameters ξ ≈ 0.5 	

λrot). In our case, we reach the optimum H at δ ≈ 10 
 ξ ,
which is close to the roton wavelength λrot ≈ 2π .

As shown in Fig. 3(d), as γ increases, the maximum H
(Hmax, achieved at the also growing p∗) increases toward 1,
suggesting that the homogeneous limit can still in principle be
approached if γ and p are increased together in a suitable way.
The trend can be understood via a simple model (dashed line).
If we assume the cloud consists of a homogeneous center with
radius γ − λrot and an inhomogeneous boundary with a width
λrot, we can estimate Hmax ≈ (1 − λrot/γ )2.

Finally, we consider the implications for experimentally
realizing a close-to-homogeneous dipolar gas in the roton
regime. Unlike for gases with solely repulsive contact inter-
actions, the need for relatively soft walls means that the optics
for creating an appropriate trap is unlikely to be a signifi-
cant constraint. Instead, the limiting factor is likely to be the
number of atoms required to fill a high-γ trap. For an approx-
imately uniform gas in the roton regime n2D ≈ 1/(πγ 2) ≈
ncrit

2D , which using Eq. (4) gives γ 2 = 4Naeff/(νcrit(εdd)�z ).
This shows that filling a large-γ trap requires �z to be small;
however, �z needs to be kept large enough to avoid high
(3D) number densities which result in excessive three-body
losses. The (dimensionful) peak density can be obtained via
the chemical potential and is given by nmax

3D ≈ μh(εdd)/geff ×
N/�3

z = μh(εdd)/(4πaeff�
2
z ), where μh(εdd) is the (dimension-

less) chemical potential tabulated in Ref. [34]. Solving for �z

and inserting into our expression for γ 2 gives

γ 2
max ≈ 8π1/2

νcritμ
1/2
h

N
(
nmax

3D a3
eff

)1/2
. (7)

Therefore, with 105 erbium or dysprosium atoms (for which
add ≈ 100a0, and setting as ≈ 0), if we limit n3D � 100 µm3 ,
one could reach γmax ≈ 40 with �z ≈ 0.4 µm (equivalent to
a vertical trapping frequency of ≈ 400 Hz), resulting in H ≈
70 % for p∗ = 8 (cf. H ≈ 10 % in a harmonic trap).

In conclusion, we have explored the homogeneity of a
dipolar gas, tuned close to its stability boundary, in a flattened,
cylindrically symmetric power-law potential. We found that a
large exponent in the power-law triggers density oscillations
near the trap wall which prevent the bulk of the trap achieving
the density a perfectly homogeneous flattened system would
have. An intermediate exponent is therefore more suitable,
and we found its optimal value is determined by the trap
wall steepness, which depends on both the aspect ratio and
power-law exponent. These findings guide the way toward the
experimental realization of such a homogeneous dipolar gas
for the study of, for example, droplet arrays, novel supersolid
phases, and critical phenomena.

Data supporting this publication are openly available in
Ref. [45].
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APPENDIX

We numerically solve the GPE using both the precondi-
tioned conjugate gradient method [46] and imaginary time
propagation with the split-operator technique [47] to cross-
check our results. Our algorithm largely follows Ref. [48]
with some differences laid out below, and is implemented
in PYTHON using several highly efficient and parallelized
lower-level libraries for the most computationally expensive
parts [49]. Given the trap has axial symmetry, the 3D problem
can be reduced to a 2D one computationally. We sample the
wave function on a grid and calculate the kinetic and dipolar
interaction terms in the GPE using a Hankel transform along
r and a cosine transform along z, given the ground state is
symmetric with respect to z = 0. To avoid interaction between
phantom copies of the cloud along z due to the cosine trans-
form, we employ a cutoff of the dipolar interaction in this
direction (this is not a problem along r) [48]. The drawback
of using a 2D grid is that it does not allow for instability due
to angular excitations. To take these into account, we ensure
that all angular excitations have a real positive energy using
the Bogoliubov–de Gennes (BdG) formalism [48]. To find the
largest interaction strength at which a stable condensate can
be produced, we employ a binary search technique.

1. Grid

The grid needs to be large enough to comfortably contain
the gas, whose size can be estimated using the Thomas–Fermi
approximation. We calculate the Thomas–Fermi radii of a
gas in our trap with an effective scattering length aeff = as +
2add [34], and find (in our dimensionless units)

Rr =
(

3νcrit(εdd)

2

) 2
3p

γ , Rz =
(

3νcrit(εdd)

2

) 1
3

, (A1)

where νcrit is tabulated in Ref. [34].
Along z we use a uniform grid with a grid size of 10, which

is large enough to avoid interaction between phantom copies
of the gas. Note that we use a constant grid size as Rz depends
only weakly on εdd.

The grid along r is (slightly) nonuniform and is defined
by r j = α j/β, j = 0, . . . , N where α j are the zeros of the
first-order Bessel function J1(r) [50] and β is chosen to give
an overall grid size of 1.2Rr . The Hankel transform can be cal-
culated on this grid with the same computational complexity
as in Ref. [48], but additionally it samples the center of the
trap.

This grid allows exact integration (for normalization and
to calculate the energy and the chemical potential) and inter-
polation (for expressing the wave function on different grids
during the calculation of excitations). Similarly to Ref. [48],
for a function f (r) sampled on this grid, it can be shown using
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a Dini series expansion that
∫ ∞

0
f (r)r dr = 2

β2

N∑
j=0

f (r j )J
−2
0 (α j ). (A2)

Exact integrals in k-space can be similarly calculated. Further-
more, like in Ref. [48], using a Dini series expansion again an
exact interpolation formula can be derived [51]:

f (r) = 2rβJ1(rβ )
N∑

j=0

1

r2β2 − α2
j

J−1
0 (α j ) f (r j ). (A3)

The number of grid points are chosen to be 256 × 65 (r ×
z) which ensures adequate sampling of the shortest relevant
length scales (the oscillator length �z = 1 along z and the
roton wavelength λrot ≈ 2π along r). We checked that our
results were insensitive to the exact number of grid points.

2. Excitations

Excitations can in general be written in the form
f (r, θ, z) = f (r, z)e−imθ [48], where f (r, z) has a definitive
symmetry (even or odd) with respect to z = 0 and m is the
phase winding number of the excitation. For a stable wave
function, excitations with any m must have a (real) positive
energy and so excitations with a range of m need to be calcu-
lated. The highest m excitations that can lead to instability
occur for high-p traps, when the peak density is along a
ring near the wall. In this case, the lowest-lying excitation
can be thought of as a buckling along this ring (an angular
roton [17]), such that mcrit ≈ 2πRr/λrot. In practice, we find
testing above 1.25mcrit is not required and that always even
excitations soften first, as the lowest-lying odd excitation is
the Kohn mode, with exactly h̄ωz energy [52].

We note that as the eigenvalues of the BdG equations are
real for a stable condensate, to find the energy of the lowest-
lying excitation it is sufficient to use the ‘SR’ (smallest real
part) mode of ARPACK [48], without a preconditioner, which
avoids calculating the inverse of the BdG matrix.

3. Convergence

To ensure our solution to the GPE has adequately con-
verged, we:

(a) required the smallest m = 0 eigenvalue of the BdG
equations to be (effectively) 0, as the presence of such a
neutral mode confirms the ground state has been reached [48];

(b) independently applied both the preconditioned conju-
gate gradient method [46] and imaginary time propagation
with the split-operator technique [47] and checked for con-
sistency.

However, as calculating BdG eigenstates is numerically ex-
pensive, we implemented less stringent but numerically much
less expensive tests before the m = 0 test takes place.

In the case of imaginary time propagation, convergence
depends on both the time step size δt and the criteria for
halting the imaginary time propagation. For a given δt we
assume an exponential convergence (in imaginary time) of
the wave function’s energy, and require the energy difference
from its infinite-time value to be below a certain threshold
Etol. By considering the change in ln(−dE/dt ) in successive
time steps, this energy difference can be calculated using the
energy difference δEi between successive time steps, and the
criteria amounts to requiring

δEi

ln
(

δEi
δEi−1

) < Etol. (A4)

Making larger time steps δt has the benefit of converging
faster, but given the split-step method yields an error in
the energy of O(δt3), it comes at the expense of making
larger errors. Therefore, after an iteration set with a certain
δt converged, we decrease our δt by 3

√
2 and continue with

this procedure until the energy change between successive
δt iteration sets is also smaller than Etol. We then do the
m = 0 BdG lowest eigenvalue test and lower Etol until it is
passed.

For the preconditioned conjugate gradient method [46],
we follow the approach in Ref. [53], with the choice of the
combined (symmetric) preconditioner and the Polak–Ribière
formula [54] to enforce the conjugacy criterion. The conver-
gence of this method is determined by a single threshold, by
ensuring the energy change between subsequent ground state
candidates is not more than δEPCG = 10−12. We found that
this was sufficient to pass the m = 0 test.
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7
Conclusion

Sovereign Order of Malta. Gules, a cross Argent.

This thesis reported on three important steps towards realising homogeneous dipolar

Bose–Einstein condensates.

First, after presenting an overview of our experimental apparatus and the techniques

used therein, we reported our optimised experimental sequence to produce a quantum

degenerate gas of erbium and demonstrated our ability to create a quasi-pure BEC with

2.2× 105 atoms. This is a larger sample than what have been used so far in experiments

probing the roton regime of dipolar physics and presents experimental progress towards

probing exotic quantum phases.

Second, we explored density- and temperature-dependent losses in 166Er and identified

six previously unreported resonant loss features. It is with this knowledge that we were

able to optimise our BEC production sequence. We found that losses in 166Er have a strong

temperature dependence, suggesting a higher partial-wave character. We also presented

an extension of the loss model and found that it describes the temperature evolution of

the atom cloud well.

Finally, we presented a theoretical study of strongly dipolar condensates in box-like

traps. We explored how one can replicate a fully homogeneous system within a trap, and

explored the stability of condensates in box-like traps. We found that traps with hard walls

trigger roton-like density oscillations even if the bulk of the system is far from the roton
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regime, so smoother potentials are better suited to recreate homogeneous conditions.

This gives important implications for designing an optical box trap for dipolar atoms.

7.1 Outlook

The experimental and theoretical progress presented in this thesis set the ground for

future experiments. To enable studies of systems tightly trapped in one direction but

homogeneous in the other two, from an experimental point of view, the atoms have to

be transported to the science cell where a box trap will be implemented. To this end,

the optical setup to project the walls of the box trap (using a spatial light modulator)

has been tested and the laser producing the attractive sheet beam has been sourced. The

coils around the cell have also been designed and manufactured, and are currently being

installed on the system. Finally, a system to project arbitrary optical potentials (e.g. for

Bragg spectroscopy, using a digital micromirror device) has also been tested (see Ref. 104

and references therein). An extension to add potassium as a second species has also been

designed and manufactured. The laser locking system has been implemented and the

relevant vacuum parts have been attached to the chamber, and will be pumped down to

sufficient vacuum conditions in the months to come.

The apparatus is set to be used for a variety of physical experiments. The long-

range interactions, through their effect on the excitation spectrum, can affect the critical

temperature of the gas. The roton-like excitation spectrum of a dipolar BEC, as explained

in §2.3.3, also introduces a variety of phenomena which can be explored, one of which is its

effect on the superfluid critical velocity. This can be deduced by measuring the excitation

spectrum directly using Bragg spectroscopy [72, 305, 306] or by stirring the BEC with a

blue-detuned laser [307]. This technique can also be used to investigate the role of vortices

in this context. Furthermore, by tuning the roton gap via Feshbach resonances, the system

can be driven to form quantum droplets, exhibiting supersolidity in some cases. To this

end, the first quantum droplets have been recently realised with our system (see Fig. 7.1).

Another phenomenon which can be explored is the effect of long-range interactions

on the dynamics of the BEC phase transition.The transition from a thermal gas to a BEC is

a second-order phase transition, i.e. the order parameter (the macroscopic wave function)

changes continuously, but the phase symmetry is broken as the system crosses the critical

temperature. If the transition is crossed infinitely slowly (the so-called adiabatic limit),

the entire condensate will assume a state with a unique phase. However, if the transition

is crossed at a finite rate, domains with different order-parameter values appear due to the

limited range over which correlations can spread before being frozen out by the transition.
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Figure 7.1. Quantum droplets. Absorption image of quantum droplets taken after a time
of flight (false colour). Quantum droplets develop if the system is driven
close to instability by decreasing the relative strength of contact interactions.
Furthermore, if the droplets establish a common phase, the system can exhibit
supersolid properties.

This mechanism is described by Kibble–Zurek (KZ) theory [39, 308, 309], which relies

on the universal scaling behaviour of system parameters in the vicinity of the critical point.

It predicts that the correlation length b of the system obeys a power-law scaling with

distance from the critical point, b ∝ |Y |−a , where Y = ) /)2 − 1. Furthermore, the freeze-out

correlation length depends on the time scale of crossing the transition (see Fig. 7.2). There

are similar scaling relations for the heat capacity, order parameter magnitude etc., each

with its own scaling exponent, and it has been shown that the exponents are insensitive

to microscopic properties of the system and are rather determined by the dimensionality

and symmetries of the system and the order parameter, yielding certain universality

classes [310, 311]. As the long-range nature of the dipole–dipole interaction could alter the

mechanism of correlation propagation through the system, it could result in a different

set of scaling exponents (and hence a different universality class).

Ultracold-atom platforms proved to be well-equipped for exploring this experiment-

ally, due to the tunability of system parameters and the readily accessible critical phe-

nomena [39]. Given that the BEC transition is sensitive to density, systems with a ho-

mogeneous density have a crucial advantage in these efforts, as all parts of the system

cross the phase transition at the same time [48, 49, 312, 313]. The transition dynamics

can be explored via temperature quenches, but also by changing the strength of con-

tact interactions via Feshbach resonances (due to the dependence of )2 on interaction

strengths). This process is, unlike evaporative cooling, reversible, so the reversibility of
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Figure 7.2. Kibble–Zurek theory. (a) A linear temperature () ) ramp in time, inducing
a second-order phase transition when the temperature reaches )2 , at time C2 .
(b) The correlation length b and the associated relaxation time g (the time scale
over which the system adjusts to a new equilibrium value of b following a
change in temperature) as a function of time for a linear temperature ramp. As
both diverge near the critical point, correlations freeze out when the relaxation
time becomes longer than the time remaining to the crossing of the transition.
(c) Freeze-out results in domains developing with a characteristic size defined
by the finite freeze-out correlation length. Figure adapted from Ref. 39.

the transition and the presence of any hysteretic artefacts (arising from crossing the

transition multiple times) could be examined. It is worth mentioning that the supersolid

transition [80–82] could also be explored, which, being a quantum phase transition, could

probe the quantum limit of KZ theory.

Physical phenomena in ultracold dipolar systems can be further enriched by adding

another species. By adding potassium atoms to the platform, making it a dual-species

experiment, the system will be capable of exploring impurity physics in dipolar bosonic

systems.There are two directions of researchwhich could be explored. First, Bose polarons

could be investigated (a potassium impurity moving through an erbium BEC background),

which can be made anisotropic via the dipole force [93]. As the complex and anisotropic

electron structure of erbium yields a rich spectrum of Feshbach resonances in Er–Er

collisions, we expect a similar abundance of Feshbach resonances for Er–K scattering.

This, combined with the long-range and anisotropic dipolar force, should enable us to
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flexibly tune the dispersion relation of the polarons.

Furthermore, the tunability of the excitation spectrum of the erbium BEC makes it a

promising candidate for creating a controllable quantum reservoir for quantum computing.

As the spectrum softens, the appearance of the roton minimum and the accompanying

maxon leads to a high density of states at the roton and maxon frequencies. As shown

in Refs. 94 and 95, the information flow from a single-atom qubit immersed in a dipolar

condensate can be controlled by tuning the parameters of the reservoir, as the evolution of

decoherence is dominated by the frequencies corresponding to the roton and the maxon

features, leading to non-Markovian behaviour and the possibility of information flow

back from the reservoir into the qubit system.
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A
High-power beams

Most of our optics and devices were not prepared to bear the high powers and

intensities of the IR lasers that we use. In fact, another group have already abandoned

using the same type of lenses and switched to fixed focal length lenses made of a different

material (UV fused silica instead of N-BK7, as the former has a lower thermal expansion

coefficient, causing a smaller thermal lensing effect) and also decided to use a transport

system with lenses on a translation stage instead of the focus-tunable lenses (FTLs)

precisely because they do not operate well under high power [314].

This was not easy to foresee as the FTLs have a damage threshold that is much higher

than the laser intensities we use. In line with this, the lenses are not permanently damaged

in our system but show severe thermal lensing, meaning they can only be used during

the first few seconds after the laser reaches them and then they need to be left cooling for

around 30 s. On top of this, these lenses have to be used with their optical axes vertical.

This is not ideal, but in our experimental sequence we will only have high power on the

lenses for a short time, so we are going ahead with this solution. However, alternatives

are being considered, such as a low-vibration translation stage [239] and Moiré lenses,¹ a

different type of tunable lens which is reportedly significantlymore immune to aberrations

and thermal lensing effects [315]. Regarding the fixed focal length lenses, using N-BK7

lenses seemed suitable for our case, and no difference could be seen when lenses made

of UV fused silica were substituted for (the cheaper) lenses made of N-BK7.²

Another problem with characterising our setup was imaging high intensities (e.g. the

ODT at full power) as most intensity filters break at such high powers and cubes do not

work perfectly either.

These problems were not straightforward to circumvent, and the high-power imaging

techniques are presented in Appendix A.1 along with a quantisation of beam quality

presented in Appendix A.2. A few images of the various problems are presented in Fig. A.1.

¹ Manufactured by Diffratec.
² Both manufactured by Thorlabs.
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(a) (b)

(c) (d)

Figure A.1. Issues with the laser beam. (a) The beam coming out of the laser near its
waist. The beam is doughnut-shaped, due to the cladding modes present. A
Gaussian shape can be restored by filtering these modes out, putting an iris
at the focus. (b) This beam shape is a high-power imaging artefact, caused by
internal reflections and the finite extinction ratio when a cube and wave plate
are used to reduce the power to image the beam. (c) Comatic aberration when
the focus-tunable lens is used with its optical axis horizontal. This can be
solved by turning the lens to have its optical axis vertical. (d) Thermal lensing,
caused by the heating up of the focus-tunable lens. A severely distorted beam
shape develops over 5 s, so the lens can only be used for a few seconds after
which it needs to cool down, taking 30 s.

A.1 High-power beam imaging

It was not straightforward to image a 45W beam, given no ordinary camera or filter

can take such high power. As the filters can take up to 10mW at the beam waists we

use, we need to filter out as much as 99.98% of the light. Traditionally, to achieve this,

a combination of a half-wave plate placed in front of a polarising beamsplitter cube is

used. The wave plate rotates the polarisation of the light which is then split by the cube,

so by rotating the wave plate, the transmitted light intensity can be controlled. In our

case, the cube transmits horizontally polarised light, and since the laser polarisation is
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vertical it has to be rotated by only a very small amount to get a suitably low power in

the transmitted wave.

The problemwith this is that there is a horizontally polarised part of the laser light that

has a strange pattern, which then also gets transmitted through the cube. While the power

in this originally horizontal part (power � = 40mW) is much smaller than that of the

vertical part (power + = 45W), it is comparable to the transmitted portion of the vertical

part we really want to look at, and so we observe a pattern that is really not Gaussian

(cf. Fig. A.1(b)). We also tried to image the beam by trying to look at the transmitted part

through a back-polished mirror, but this was not successful as the transmission ratio was

too low.

The solution was introducing a beam sampler between the wave plate and the cube. To

get the smallest amount of light through the system, we need to look at the ?-polarised (i.e.

horizontal) light as the reflectance of the beam sampler is much smaller for ?-polarisation

than it is for B-polarisation (i.e. vertical). The idea then is that we turn the wave plate so

it rotates the polarisation of the laser by 90°, so a small part of + and a larger part of � is

reflected. This is not a problem, since + � � , so the cube will now be able to filter out

the � part which is now vertical, enabling us to look at the transmitted + part.

Mathematically, if the wave plate rotates the polarisation by \ , the power in the

horizontal part of the beam after the wave plate (?-polarisation) will be %? = + sin2 \ +
� cos2 \ , while in the new vertical part (B-polarisation) it will be %B = + cos2 \ + � sin2 \ .

If the reflection coefficients for the two polarisations are '? and 'B ('B � '? ), the total

reflected power is % = '?%? + 'B%B . Due to the large power imbalance between the ? and

the B part, we have to take into account the finite extinction ratio of the cube, 4 . Assuming

a horizontal transmittance close to 1, the total power transmitted through the cube is %C =

'?%? + 'B%B/4 . The coefficients '?,B are a function of the angle of incidence \8 of the laser

on the beam sampler and the refractive index of the beam sampler =, and can be written as

'? =

���������
√
1 −

(
sin\8
=

)2
− = cos\8√

1 −
(
sin\8
=
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+ = cos\8

���������
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In theory, we can then make %B arbitrarily small by adjusting \8 , but for our beam
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λ/2 BS beam dump

cube

beam dump camera

Figure A.2. System to image a high-power beam. The beam goes through a wave plate
rotating its polarisation by \ = 90◦ and then reflects from a beam sampler (BS)
at ca. \8 = 55◦ angle of incidence. It then goes through a polarising beam
splitter cube so the horizontal polarisation is kept and then it is imaged with
a camera.

sampler³ the smallest we can make '? is 0.0022% with 'B ≈ 1000'? at the same angle.

We also see that the extinction ratio for the transmitted beam of our cube⁴ is 4 ≈ 1000.

If \ = 0◦, the transmitted power is %0 = '?� + 'B+/4 , whereas if \ = 90◦, the

transmitted power is %90 = '?+ + 'B�/4 . These are roughly equal, as by substituting the

known ratios we get % ≈ '? (+ +� ) in both cases, which was confirmed by measurement.

Since +/� ≈ 1000, we get % ≈ '?+ , so we are able to look at only the + part in both

cases. However, we prefer to look at the \ = 90◦ case as then we can look at a directly

transmitted + part rather than relying on it being transmitted due to the non-perfect

finite extinction ratio of the cube.

With this technique we can get rid of all the high-power imaging artefacts. The system

can be seen in Fig. A.2.

A.2 Beam quality

Due to observing various different non-Gaussian patterns, we had to devise ametric de-

scribing how close our beam is to a perfect Gaussian. While there are many different ways

to do this, what we are really interested in is how well trapping would work, i.e. how high

the peak intensity of the beam is compared to a Gaussian beam with the same total power.

³ BSF10-B by Thorlabs.
⁴ CCM1-PBS253/M by Thorlabs.
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To measure the peak intensity, we look at our beams with a camera with square pixels

of size 0. The intensity distribution of a Gaussian beam is given by

� (G,~) = �04
− 2G2

F2
G
− 2~2

F2
~ , (A.3)

where �0 is the peak intensity andFG,~ are its waists. The brightness of each pixel depends

on the power incident on the pixel, and at the central pixel we will record a power of

%2 =

∫ 0
2

−0
2

∫ 0
2

−0
2

� (G,~) dG d~ =
1
2
�0cFGF~ erf

(
0
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The total power in the beam is

%0 =

∫ ∞

−∞

∫ ∞

−∞
� (G,~) dG d~ =

1
2
�0cFGF~ , (A.5)

so the relative power on the central pixel compared to the total power for a perfectly

Gaussian beam is

%rel =
%2

%0
= erf

(
0

√
2FG

)
erf

(
0

√
2F~

)
. (A.6)

For the imaged beam, we can record the total power by summing all pixel values. To

get the central power, we can select the brightest pixel and claim it is the centre of the

beam, where atoms will be trapped, or if the beam is reasonably Gaussian, we can also fit

a Gaussian to it and extract the peak power from that. The ratio of these two will be the

experimentally measured %rel, exp which we can compare to the theoretical %rel we expect,

and create the metric

�rel =
%rel, exp

%rel
. (A.7)

If �rel ≈ 1, it means the peak intensity is close to what we expect of a Gaussian beam, but

if �rel < 1, it means the peak intensity is smaller than what we would like to see.





B
Extended three-body loss model

Here we estimate the geometrical prefactors � and �′ for the extended loss model

presented in Chapter 5 and also present the loss model for a BEC.

B.1 Three-body loss in a thermal gas

B.1.1 Event rate

Let us start by calculating the probability that a particle suffers a three-body collision

and the associated rate of collisions. The event rate (per unit volume) of three particles

colliding is proportional to =3(r). Writing the constant of proportionality as !3/3 (which

is equivalent to saying that the probability of a three-body event per particle in unit time

is %3B(r) = !3=
2(r)/3) and recalling that three particles are lost from the trap at each

event, one recovers the three-body loss rate (per unit volume)

¤=3(r) = −!3=3(r) . (B.1)

In a thermal gas, this leads to the following equations for the evolution of atom

number and temperature (cf. Eqs. (5.3) and (5.8)):

¤#0 = −!3
(
<l̄2

2
√
3c:�

)3
# 3

) 3 , (B.2)

¤)0 =
!3

3

(
<l̄2

2
√
3c:�

)3
# 2

) 2 , (B.3)

where the subscript denotes the fact that these do not take into account secondary

collisions. While this simple model is valid in low-density regimes, for higher-density

clouds, secondary collisions of the collision products with the rest of the atomic cloud

need to be accounted for.
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B.1.2 Secondary collisions

Let us consider the probability of a secondary collision given a ‘projectile’ particle

of velocity v, starting at position r0 and moving through a cloud of static ‘targets’ of

(number) density =. In time ΔC , the probability that the projectile will have hit a target on

its way is given by %coll = f=EΔC , where f is the scattering cross section. In time C =
∑
8 ΔC8 ,

the probability of avoiding a collision is

%surv = lim
ΔC→0

∏
8

(1 − f=EΔC8) = lim
ΔC→0

(1 − f=EΔC)C/ΔC = 4−=fEC . (B.4)

As harmonically trapped gasses are not homogeneous, one has to account for time-

varying target density as the projectile travels through the cloud, leading to the modified

expression

%surv = lim
ΔC→0

∏
8

4−fE=(C8 )ΔC8 = lim
ΔC→0

4−fE
∑

8 =(C8 )ΔC8 = 4−fE
∫ C

0 =(C
′) dC ′ . (B.5)

If we assume that the projectile particle is moving along a straight line, i.e. it is minimally

perturbed by the trapping potential, we canwrite r(C) = r0+vC . Substituting=(C) = =(r(C))
into Eq. (B.5) and averaging over initial velocities¹ gives

%surv(r0, l̄,) ) = exp

(
−f=(r0)

√
3c

2<V
∑
8 l

2
8

4V*̃ (r0)
)
, (B.6)

where we defined *̃ (r) = <∑
8 l

4
8 A

2
8 /2

∑
8 l

2
8 and V = 1/:�) . We note that the survival

probability is independent of the projectile velocity as expected.

We can extend the dilute-cloud loss model by considering three-body collision events

in which one or both of the products encounter a cloud (target) particle on their way out of

the trap. In all of the subsequent calculations we assume %surv ≈ 1, i.e. %coll = 1−%surv � 1

so we can neglect terms of O
(
%2coll

)
.

B.1.3 Ideal three-body loss

The dominant contribution to atom loss comes from events when both the formed

molecule and the remaining (singular) particle escape the cloud (a ‘double escape’). The

¹ It is important to note that in deriving Eq. (B.6) we do not average velocities in a mathematically
rigorous way. We simply set E2G = E2~ = E2I = E2/3 in an equipartition-like assumption.
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probability of such an event per particle in unit time is

%DE(r0) = %3B%esc%̃esc = %3B(1 − %coll) (1 − %̃coll) ≈ %3B(1 − %coll − %̃coll) , (B.7)

where the tilde is used to distinguish between quantities referring to the singular particle

(plain) and the molecule (tilde) and r0 is the position where the collision takes place. (Note

that both %3B and %coll depend on position, but we did not mark their explicit position

dependence for ease of notation.) This process leads to the particle and energy loss rates

¤#DE = −3
∫

=(r0)%3B(1 − %coll − %̃coll) d3r0 , (B.8)

¤�DE = −3
∫

=(r0)�̄ (r0)%3B(1 − %coll − %̃coll) d3r0 , (B.9)

where �̄ (r0) is the mean energy of a particle at r0 and the factor of three accounts for

the fact that all three particles participating in the collision are lost (i.e. three particles

colliding at r0 have energy 3�̄ (r0) on average).

B.1.4 Higher-order corrections

The remaining two cases (where either the molecule or the singular particle undergoes

a collision on its way out while the other leaves without colliding) mirror each other, so

we will only describe one of the processes. The probability that both collide is O
(
%2coll

)
and can therefore be neglected.

The probability of singular particle collision andmolecular escape is %ME = %3B%coll(r0)
× %̃esc(r0) ≈ %3B%coll(r0). (The subscript ‘ME’ stands for ‘molecular escape’ and ‘PE’ will

be used for ‘particle escape’.) The effect of the collision on the particle number and energy

of the cloud needs some careful thought. If we assume that the particles undergo elastic

collisions, there are three possible outcomes of a collision of the singular ‘bullet’ particle

with a slow particle of the cloud:

1. High energy (HE). The bullet hits the other particle ‘head on’, transferring most of

its energy such that the bullet becomes slow and stays in the cloud, and the target

particle becomes a bullet and leaves the cloud. In this case, the original bullet stays

behind and heats up the cloud with the excess energy it has left.

2. Knockout (KO). The bullet transfers some of its energy to the target particle, turning

it effectively into a bullet while itself remaining ballistic in nature. In this case,

both the bullet and the target leave the cloud.
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3. Low energy (LE). The bullet grazes the target particle transferring some energy, but

not enough to knock it out. In this case, the target stays in the cloud and heats it up.

For a very fast bullet and an essentially stationary target of equal mass, %LE � 1,

%HE � 1 and %KO ≈ 1. This allows us to neglect terms of O(%coll%HE) and obtain the

particle and energy loss rates

¤#ME ≈ −4
∫

=(r0)%3B%coll d3r0 , (B.10)

¤�ME ≈ −
∫

=(r0)%3B%coll
(
3�̄ (r0) + �̄coll(r0)

)
d3r0 , (B.11)

where �̄coll(r0) is the average cloud particle energy at the point of the secondary collision,

subject to the three-body event taking place at r0. Note that the factor of four in Eq. (B.10)

accounts for the fact that four particles leave the trap altogether in this case (the original

three plus the one involved in the secondary collision), whereas the factors in Eq. (B.11)

reflect the fact that the energy 3�̄ (r0) is lost via the three-body collision and �̄coll(r0)
via the secondary collision. �̄coll(r0) can be obtained by integrating the probability of

colliding in a small time interval [C, C + dC] and using the average particle energy at

position r(C), leading to

�̄coll(r0) =
∫ ∞

0
=(C)fE4−fE

∫ C

0 =(C
′) dC ′

(
* (r(C)) + 3

2
:�)

)
dC

= * (r0) +
3
2
:�)︸           ︷︷           ︸

� (r0)

+1
2
:�) − *̃ (r0) . (B.12)

Similar expressions hold for the case of particle escape and molecular collision (PE),

with %coll replaced by %̃coll. Combining the three contributions to particle and energy loss,

i.e. ¤# = ¤#DE+ ¤#ME+ ¤#PE and ¤� = ¤�DE+ ¤�ME+ ¤�PE, and evaluating the integrals finally give

¤# = ¤#0

©­­«1 +
3
4c
<#

:�)

l̄6

Ω̄3

1√∑
8 l

2
8

(f + f̃)
ª®®¬ ≡ ¤#0

(
1 + Θ

#

)

)
, (B.13)

¤) = ¤)0

(
1 + Θ

#

)

(
3
∑
8

l2
8

Ω2
8

− 2

))
, (B.14)

where Ω̄ is the geometric mean of Ω8 =
√
4l2

8
− l4

8
/∑ 9 l

2
9
. Therefore, the geometrical
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factors can be expressed as

� =
3
4c

l̄4

Ω̄3

1√∑
8 l

2
8

, (B.15)

�′ =
3
4c

l̄4

Ω̄3

1√∑
8 l

2
8

(
3
∑
8

l2
8

Ω2
8

− 2

)
. (B.16)

B.2 Three-body loss in a Bose–Einstein condensate

In a BEC, due to the quantum-correlated nature of the gas, the three-body loss rate

acquires a factor of 1/3! accounting for the fact that density fluctuations are suppressed in

a quantum gas [258] (the three-body process occurs between three identical bosons in

the same single-particle state), leading to

¤=(r) = − 1
g1
=(r) − 1

3!
!3=

3(r) . (B.17)

In the Thomas–Fermi (TF) approximation, the density distribution in a harmonic trap is

given by

=(r) = 15#
8c'G'~'I

(
1 − G2

'2G
− ~2

'2~
− I2

'2I

)
, (B.18)

where 'G , '~ and 'I are the respective Thomas–Fermi radii [64, 187, 316, 317]. Substituting

this to Eq. (B.17) leads to

¤# = − 1
g1
# − 1

3!
!3

75

56c2'2G'
2
~'

2
I

# 3 . (B.19)

It can be shown that 'G'~'I = U# 3/5, where U is a scaling parameter which can be

determined by obtaining a self-consistent solution to the TF equations.Therefore, Eq. (B.19)

can be rewritten more compactly as

¤# = − 1
g1
# − !3

25
112c2U2

# 9/5. (B.20)

Furthermore, if one neglects one-body loss altogether, which is often valid as the high

density of BECs leads to a more significant three-body loss, Eq. (B.20) can be solved

analytically, leading to

# − 4
5 (C) = # − 4

5 (0) + 5
28c2U2

!3C . (B.21)





C
Discrete transforms and their efficient
calculation

Givenwe run all our simulations on a computer with finite memory and computational

power, we need to represent our wave functions on a discrete and finite grid. This means

we can not use continuous Fourier (FT) and Hankel transforms (HT) or continuous

integrals but we need to establish their discrete approximations.

C.1 Discrete Fourier transform

Let a function 5 (G) be sampled on [−!/2, !/2] at # evenly distributed points G= , with

G= = −!
2
+ =!
#

(C.1)

for = ∈ {0, . . . , # − 1}, and let us define 5= = 5 (G=). Let us assume 5 (G) = 0 if |G | > !/2.
In this case, the Fourier transform can be written as

F {5 }(:) =
∫ !

2

− !
2

5 (G)4−8:G dG ≈
#−1∑
==0

5=4
−8:G= !

#
. (C.2)

The discrete Fourier transform (DFT) of a sequence of# (complex) numbers {5=}, mapping

it onto another sequence of # (complex) numbers {�; }, is defined as

�; = DFT{5 }; =
#−1∑
==0

5=4
−2c8 =;

# , (C.3)

By comparing Eqs. (C.2) and (C.3), one can show

F {5 }
(
2c;
!

)
=
!

#
(−1); DFT{5 }; . (C.4)
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One could then conclude the DFT samples the Fourier transform at :; = 2c;/!. However,

due to the arbitrariness of the phase in the exponent in Eq. (C.3) (i.e. one could add

arbitrary amounts of 2c to it), we can also write

:; =


2c
!
; if 0 ≤ ; < #

2

2c
!
(; − # ) if #2 ≤ ; ≤ # − 1

. (C.5)

Similarly, if the Fourier transform of the function is band-limited to |: | < c# /! (i.e.

it is zero outside this band) and is sampled on [−c# /!, c# /!] at

:; = −c#
!

+ 2c;
!

(C.6)

for ; ∈ {0, . . . , # − 1}, the inverse Fourier transform can be written as

1
2c

∫ c#
!

− c#
!

F {5 }(:)48:G d: ≈ 1
2c

#−1∑
;=0

�;4
8:;G

2c
!
, (C.7)

where �; = F {5 }(:; ). The inverse discrete Fourier transform (IDFT) is defined as

5= = DFT−1{� }= =
1
#

#−1∑
;=0

�;4
2c8 =;

# =
1
#

DFT{� ∗}∗= , (C.8)

where ∗ represents complex conjugation. By comparing Eqs. (C.7) and (C.8) one can show

5

(
=!

#

)
=
#

!
(−1)= DFT−1{� }= . (C.9)

Again, we could conclude the IDFT samples the function at G= = =!/# , but by a similar

argument as above, it can be shown this can also be written as

G= =


!
#
= if 0 ≤ = < #

2

!
#
(= − # ) if #2 ≤ = ≤ # − 1

, (C.10)

which is what we have written originally in Eq. (C.1).

It is worth noting that a function cannot be (band-)limited in both A and : space at the

same time. If we assume the Fourier transform is zero outside the domain that is repres-

ented by the # :; points, we assume the function we are sampling is periodic outside the

(real-space) sampling domain. This aliasing causes a problem with the dipolar interaction

as in this case one gets a contribution from the interaction between the alias clouds. To
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avoid this along A , the Hankel transform is used in that direction—see Appendix C.4.

Along I, a cutoff is introduced to the dipole interaction and a relatively large grid is used.

It is also not trivial to calculate derivatives for a similar reason. A recipe for developing

an interpolation function for calculating derivatives can be found in Ref. 318.

C.2 Discrete cosine transform

The discrete cosine transform (DCT) is a faster way of calculating the DFT when the

function sampled is of even parity. Let us assume that our data points {5=} represent a

function sampled at {G=} ∈ [−!/2, 0], which is even around G0 = −!/2 and G#−1 = 0. The

DCT (DCT-I) is defined as

�; = DCT{5 }; = 50 + (−1); 5#−1 + 2
#−2∑
==1

5= cos

(
c=;

# − 1

)
. (C.11)

It can be shown that the DCT is exactly equivalent to the DFT of the even extension of

the series {5=}, {6<}, defined as

6< =


5< if< ∈ {0, . . . , # − 1}

62#−2−< if< ∈ {#, . . . , 2# − 3}
. (C.12)

It can be seen that 6< represents the even extension of our function 5 into the interval

[−!/2, !/2], sampling it at 2# − 2 points. Therefore,

F {5 }
(
2c;
!

)
=

!

2# − 2
(−1); DFT{6}; =

!

2# − 2
(−1); DCT{5 }; , (C.13)

i.e. the Fourier transform of an even function can be calculated using only half of the

sampling interval.

The inverse discrete cosine transform (IDCT) is defined as

5< = DCT−1{� }< =
1

2# − 2
DCT{� }< . (C.14)

Using the relationship between the IDFT and the DFT (Eq. (C.8)), and that our functions

are real and even over I (and so the DFT is also real), we find

5; = DFT−1{�}; =
1

2# − 2
DFT{�}; =

1
2# − 2

DCT{� }; = DCT−1{� }; , (C.15)
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where �; is sampling the Fourier transform on [−c (2# − 2)/!, c (2# − 2)/!] and �; is
sampling the Fourier transform on [−c (2# − 2)/!, 0]. Therefore,

5

(
=!

2# − 2

)
=
2# − 2
!

(−1)= DFT−1{�}= =
2# − 2
!

(−1)= DCT−1{� }= . (C.16)

We also see

5

(
=!

2# − 2

)
=

1
!
(−1)= DCT{� }= (C.17)

by definition.

C.3 Discrete sine transform

The discrete sine transform (DST), similarly to the DCT, is a faster way of calculating

the DFT when the function sampled is of odd parity. Let us again assume that our

data points {5=} represent a function sampled at {G=} ∈ [−!/2, 0], which is odd around

G0 = −!/2 and G#−1 = 0 (i.e. 50 = 5#−1 = 0). The DST (DST-I) is defined as

�; = DST{5 }; = 2
#−2∑
==1

5= sin

(
c=(; + 1)
# − 1

)
. (C.18)

It can be shown that−8 times the DST is exactly equivalent to the DFT of the odd extension

of the series {5=}, {6<}, defined as

6< =


5< if< ∈ {0, . . . , # − 1}

−62#−2−< if< ∈ {#, . . . , 2# − 3}
. (C.19)

It can be seen that 6< represents the odd extension of our function 5 into the interval

[−!/2, !/2], sampling it at 2# − 2 points. Therefore,

F {5 }
(
2c;
!

)
=

!

2# − 2
(−1); DFT{6}; = − 8!

2# − 2
(−1); DST{5 }; , (C.20)

i.e. the Fourier transform of an odd function can be calculated using only half of the

sampling interval.

The inverse discrete sine transform (IDST) is defined as

5< = DST−1{� }< =
1

2# − 2
DST{� }< . (C.21)
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Using the relationship between the IDFT and the DFT (Eq. (C.8)) again and that our

functions are real and odd over I (and so the DFT is purely imaginary), we find

5; = DFT−1{�}; = − 1
2# − 2

DFT{�}; =
8

2# − 2
DST{� }; = 8 DST−1{� }; . (C.22)

where �; is sampling the Fourier transform on [−c (2# − 2)/!, c (2# − 2)/!] and �; is
sampling the Fourier transform on [−c (2# − 2)/!, 0]. Therefore,

5

(
=!

2# − 2

)
=
2# − 2
!

(−1)= DFT−1{�}= = 8
2# − 2
!

(−1)= DST−1{� }= . (C.23)

We also see

5

(
=!

2# − 2

)
=
8

!
(−1)= DST{� }= (C.24)

by definition.

C.4 Discrete Hankel transform

C.4.1 0ᵗʰ-order Hankel transform

An efficient numerical approach to calculate the 0ᵗʰ order Hankel transform using

discrete data, which relies on the Dini series expansion, is laid out in Ref. 297. We will

summarise its basic principles and give a direct recipe below.

Let us consider a function 5 (A ) where 5 (A ) = 0 if A > 1 for some 1 and 5 ′(1) = 0. Let

us also assume that the 0ᵗʰ order Hankel transform of this function is band-limited, i.e.

H0{5 }(:) = 0 if |: | > V for some V . The Dini series expansion of this function and its

Hankel transform can be given as

5 (A ) = 2
12

∞∑
==0

H0{5 }
(U=
1

)
�−20 (U=) �0

(U=A
1

)
, (C.25)

H0{5 }(:) =
2
V2

∞∑
==0

5

(
U=

V

)
�−20 (U=) �0

(
U=:

V

)
, (C.26)

where �0 is the 0ᵗʰ order Bessel function of the first kind and U= are the real non-negative

roots of the first derivate of �0 (i.e. the non-negative roots of the 1ˢᵗ order Bessel function
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of the first kind, �1) with U0 = 0. The quantities

�< = H0{5 }
(U<
1

) ���−10 (U<)
��V , (C.27)

�= = 5

(
U=

V

) ���−10 (U=)
��1 (C.28)

can be expressed as

�< =

#∑
==0

�<=�= , (C.29)

�= =

#∑
<=0

�=<�< , (C.30)

where �=< are elements of a transformation matrix � given by

�=< =
2
(

���−10 (U=)
�����−10 (U<)

�� �0 (U=U<
(

)
, (C.31)

where ( = V1 and # is such that U# = ( . To make the method self-consistent, one needs

to ensure the transformation matrix � is orthogonal. This is well-achieved by choosing

( = 2
���−10 (U:)

��√√√1 +
#∑
==1

�−20 (U=) � 20
(
U^U=

�#+1

)
, (C.32)

where �#+1 is the (# + 1)ᵗʰ zero of �0 and ^ = b# /4c, where bGc is the floor function

(returning the largest integer smaller or equal to G ).

Practically, this means that given the values of 5 (U=/V), we can calculate the Hankel

transform H0{5 }(U</1) and vice versa. Therefore, to be able to calculate the Hankel

transform this way, we need to sample our function on a large enough grid covering [0, 1]
such that we can assume our function is 0 outside the grid. We then need to choose the

number of grid points, # + 1, from which we can calculate ( . We need to make sure that

# is large enough so that the Hankel transform is indeed band-limited by V = (/1. Once

this is done, these directly define the location of our grid points, which in real space will

be at A= = U=/V = U=1/( and in frequency space will be at := = U=/1 with = = 0, 1, . . . , # .

It is worth noting that A0 = :0 = 0, i.e. our function will be sampled at the origin this way.

With these, the procedure for calculating the Hankel transform and its inverse can be
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given as

H0{5 }(:<) =
|�0(U<) |

V

#∑
==0

�<= 5 (A=)
���−10 (U=)

��1 , (C.33)

5 (A=) =
|�0(U=) |
1

#∑
<=0

�=<H0{5 }(:<)
���−10 (U<)

��V . (C.34)

Therefore, calculating the Hankel transform is a matter of two multiplications and a

matrix multiplication.

C.4.2 Hankel transform of order m > 0

The above is all very useful, but H0 is only relevant for calculating the Fourier

transform of a function which has no angular (\ ) dependence. For our general case, where

the functions take the form 5 (A )4−8<\ , a slightly different approach is needed [282, 298].

Let us assume again the function is limited to A < 1 and its Hankel transform of

order< is band-limited to |: | < V . Furthermore, let us sample the function at # points

A= = U<=/V and its Hankel transform at := = U<=/1 with = = 1, . . . , # . Here U<= is the =ᵗʰ

root of �< , the Bessel function of order< of the first kind. The function and its Hankel

transform can be expanded as a Fourier–Bessel series,

5 (A ) = 2
12

∞∑
==1

H<{5 }
(U<=
1

)
�−2<+1(U<=) �<

(U<=A
1

)
, (C.35)

H<{5 }(:) =
2
V2

∞∑
==1

5

(
U<=

V

)
�−2<+1(U<=) �<

(
U<=:

V

)
. (C.36)

Again, the quantities

�; = H<{5 }
(U<;
1

) ���−1<+1(U<; )
��V , (C.37)

� 9 = 5

(
U<9

V

) ���−1<+1(U<9 )
��1 , (C.38)

are defined, which can be expressed as

�; =

#∑
9=1

�; 9� 9 , (C.39)

� 9 =

#∑
;=1

� 9;�; , (C.40)
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where the transformation matrix � is now given by

�; 9 =
2
(

���−1<+1(U<; )
�����−1<+1(U<9 )

�� �< (U<;U<9
(

)
. (C.41)

Here, ( = 1V again and # is such that ( = U<,#+1. To make the method self-consistent,

we again need to make sure� is orthogonal. This is best achieved by choosing ( = U<,#+1.

Therefore, the method is similar as before: decide on1 and# , then calculate ( and V = (/1,
which defines the grid on whichwe can calculate the (inverse) Hankel transform. Note that

in this case A1 > 0, so the origin is not sampled. Therefore, there is an advantage in using a

different method for< = 0, which samples A = 0, as we expect some of our ground states

to have their peak density at the origin, and so to be most sensitive to excitations there.

With these, the procedure for calculating the Hankel transform and its inverse can be

given as

H<{5 }(:; ) =
|�<+1(U<; ) |

V

#∑
9=1

�; 9 5 (A 9 )
���−1<+1(U<9 )

��1 , (C.42)

5 (A 9 ) =
���<+1(U<9 )

��
1

#∑
;=1

� 9;H<{5 }(:; )
���−1<+1(U<; )

��V . (C.43)

Therefore, calculating the Hankel transform is again a matter of two multiplications and

a matrix multiplication.

C.5 Integration

Sometimes we need to calculate integrals of our functions to calculate e.g. the energy.

For the case of no dependence on \ , one can observe

�A =

∫ ∞

0
5 (A )2cA dA = 2cH0{5 }(0) . (C.44)

Using a Dini series expansion one can write

H0{5 }(0) =
2
V2

∞∑
==0

5

(
U=

V

)
�−20 (U=) (C.45)

and so deduce

�A =
4c
V2

#∑
==0

5

(
U=

V

)
�−20 (U=) , (C.46)

given we can truncate the sum as 5 (A ) = 0 for A > U# /V .
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In some cases, e.g. when calculating dot products, we also need to calculate the

integral of a product of two functions:

�A,2 =

∫ ∞

0
5 (A )6(A )2cA dA = 2cH0{5 6}(0) . (C.47)

Forming the Dini series for the product 5 6, one can immediately conclude

�A,2 =
4c
V2

#∑
==0

5

(
U=

V

)
6

(
U=

V

)
�−20 (U=) , (C.48)

as the functions 5 and 6 are represented on the same grid and therefore come with the

same assumptions.

We can also calculate integrals in :-space. Similarly as before, one can observe

�: =

∫ ∞

0
H0{5 }(:A ) 2c:A

d:A
(2c)2 =

5 (0)
2c

. (C.49)

Using a Dini series expansion one can write

5 (0) = 2
12

∞∑
==0

H0{5 }
(U=
1

)
�−20 (U=) (C.50)

and so deduce

�: =
1
c12

#∑
==0

H0{5 }
(U=
1

)
�−20 (U=) , (C.51)

given we can truncate the sum as H0{5 }(:) = 0 for : > U# /1.
Integration along I can be done more simply (and less accurately) using a Riemann

sum, as the grid is linear in that direction. As the function is only represented at I ≤ 0,

we need to take into account the symmetry of the function and take especial care not to

add the I = 0 element twice to the integral.

C.6 Interpolation

We can also define an analytic interpolation function for a function represented on

this grid. Writing the band-limited 5 (A ) as an inverse Hankel transform,

5 (A ) =
∫ V

0
H0{5 }(:) �0(:AA ):A d:A , (C.52)
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and substituting the Dini series expansion of H0{5 }(:) (Eq. (C.26)) into the integral, one

can show

5 (A ) = 2AV �1(AV)
#∑
==0

1

A 2V2 − U2=
�−10 (U=) 5

(
U=

V

)
. (C.53)

This means we can calculate 5 (A ) at any A if the function is defined at points A= = U=/V .The

interpolation ofH0{5 }(:) could also be done using a similar approach, and one can show

H0{5 }(:) = 21: �1(1:)
#∑
==0

1

12:2 − U2=
�−10 (U=) H0{5 }

(U=
1

)
. (C.54)

Special care needs to be taken for A = U=/V (: = U=/1), when these formulae are not

well-defined, but in that case A = A= (: = :=) and the known 5 (A=) (H0{5 }(:=)) can be

directly used.

This interpolation technique is used for interpolating a function represented on one

grid to be represented on another. For example, calculating< > 0 excitations using the

BdG equation requires the calculation of higher-order Hankel transforms, but the grid

used along A changes with< so interpolation is needed.

Interpolation along I can be done more simply (and less accurately) using quadratic

splines, as the grid is linear in that direction. This was done using the scipy package [259].
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